
Institut für Nachrichtenvermittlung und

Datenverarbeitung (IND) der Universität Stuttgart

Prof. Dr.-Ing. Dr. h.c. Paul Kühn

Verwendung von Flows zur Analyse
und Messung von Internet–Verkehr

Diplomarbeit

von

Siegfried Löffler

<siegfried.loeffler@rus.uni-stuttgart.de>

Betreuer: Martin Lorang

Beginn: Dezember 1996

Ende: August 1997

http://home.pages.de/~dg1sek
mailto:fl@lf.net




Institute of Communication Networks and Computer

Engineering (IND) of the University of Stuttgart

Using Flows for Analysis and
Measurement of Internet Traffic

Diploma Thesis

by

Siegfried Löffler

<siegfried.loeffler@rus.uni-stuttgart.de>





Abstract

The term “flow” is being used in at least three different contexts in the Internet

environment: It is used to describe traffic for resource reservation protocols like

RSVP. “Flows” are also considered as a unit for traffic switching. Finally, flows are

a rather new category in network measurement and analysis.

In this work, the focus is on using flows for traffic measurement and analysis.

This field has become important because of the rapid growth of the Internet and the

growing demand for multi–media applications which require high bandwith net-

work resources. New tools have to be developed for the analysis and measurement

of traffic at high line speeds. These tools have to provide the information necessary

for network planning and configuration, resolution of congestion problems as well

as for user accounting and charging.

This report describes the use of a flow based methodology [14] as a means to ana-

lyze and monitor traffic. Measurement applications employing flow methodologies

are compared. Following the trend to integrate network management technologies

into a World–Wide–Web framework, a Java based traffic analyser is presented as

a contribution to the IETF Realtime Traffic Flow Measurement (RTFM) architec-

ture [4, 5, 26]. The developed applet uses the “Simple Network Management Pro-

tocol” (SNMP) for communication with RTFM traffic flow meters. It allows net-

work managers to obtain flow–based network status information in real–time using

a standard web browser.





Contents

Table of Abbreviations 11

1 Introduction 15

1.1 The Need for Traffic Analysis . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Traffic Analysis and Network Monitoring . . . . . .. . . . 16

1.1.2 Planning of Infrastructural Development. . . . . . . . . . . 17

1.1.3 Traffic Measurement and Accounting .. . . . . . . . . . . 18

1.2 The WWW as a Framework for Network Management . . . . . . . 21

1.2.1 Traffic Graphing with “mrtg” . . . . . .. . . . . . . . . . . 21

1.2.2 Network Management with “IntraSpection” . . . . .. . . . 23

1.2.3 Web Based Enterprise Management . .. . . . . . . . . . . 23

2 Flows 27

2.1 Flow Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Historical Definitions of Flows . . . . .. . . . . . . . . . . 27

2.1.2 Motiviation For a New Flow Definition. . . . . . . . . . . 28



4 CONTENTS

2.2 A Flow Model that is Suitable for the Internet . . . . . . . . . . . . 31

2.3 Flow Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 What are Flow Specifications? . . . . .. . . . . . . . . . . 33

2.3.2 Flow Directionality . . . .. . . . . . . . . . . . . . . . . . 34

2.3.3 One vs. Two Endpoint Aggregations of Traffic . . .. . . . 34

2.3.4 Types of Flow Endpoints .. . . . . . . . . . . . . . . . . . 35

2.4 The Flow Timeout Parameter . . . . . . . . . . . . . . . . . . . . . 38

2.5 Flows and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 The IPng Flow Label . . .. . . . . . . . . . . . . . . . . . 40

2.5.2 Ipsilon Tagged Flows . . .. . . . . . . . . . . . . . . . . . 40

3 Existing Flow–based Measurement and Analysis Applications 43

3.1 Cisco: NetFlow Data Export . . .. . . . . . . . . . . . . . . . . . 43

3.2 The IETF RTFM Working Group . . . . . . . . . . . . . . . . . . . 47

3.2.1 The RTFM Architecture .. . . . . . . . . . . . . . . . . . 48

3.2.2 IETF Example Applications:NeTraMet, NeMaCandNifty . 49

3.3 The NLANR OC3MON . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 OC3MON System Overview . . . . . .. . . . . . . . . . . 61

3.3.2 The OC3MON Software .. . . . . . . . . . . . . . . . . . 63

3.3.3 Flow Definition the OC3MON uses . .. . . . . . . . . . . 69

3.3.4 Flow Specification Criteria with the OC3MON . . .. . . . 70

3.4 OC3MON with NeTraMet Statistics Module . .. . . . . . . . . . . 71

3.5 Feature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



CONTENTS 5

4 Writing Web–based Management Programs 75

4.1 The Simple Network Management Protcol (SNMP) . . . . . . . . . 75

4.1.1 Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Alarm Messages (Traps) .. . . . . . . . . . . . . . . . . . 77

4.1.3 SNMP Proxy Agents for the Management of Non–SNMP

Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Programming for the WWW . . .. . . . . . . . . . . . . . . . . . 80

4.3 Writing Network–Management Applications for the World Wide Web 82

4.4 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Introduction to Java . . . .. . . . . . . . . . . . . . . . . . 84

4.4.2 The Java Security Concept. . . . . . . . . . . . . . . . . . 87

4.5 Technical Overview over the AdventNet SNMPv2 Java class libraries 92

4.5.1 SNMP Variable Classes .. . . . . . . . . . . . . . . . . . 92

4.5.2 SNMP Communication Classes . . . .. . . . . . . . . . . 93

4.5.3 SNMP MIB Related Classes . . . . . .. . . . . . . . . . . 95

4.5.4 Miscellaneous Classes . .. . . . . . . . . . . . . . . . . . 96

5 A Java Applet that works with NeTraMet Meters 97

5.1 Design of the Applet . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 The Environment . . . . .. . . . . . . . . . . . . . . . . . 99

5.1.2 The Architecture of the Applet . . . . .. . . . . . . . . . . 100

5.1.3 Organization of the Java Code . . . . .. . . . . . . . . . . 100



6 CONTENTS

5.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Preparation of the Web Server . . . . .. . . . . . . . . . . 103

5.2.2 Starting the NeTraMet meter . . . . . .. . . . . . . . . . . 103

5.2.3 Uploading Rulesets with a manager application . . .. . . . 104

5.2.4 Using the Applet . . . . .. . . . . . . . . . . . . . . . . . 105

5.2.5 Getting more detailed Information . . .. . . . . . . . . . . 108

6 Further Work 111

6.1 The Fluid Applet and the RTFM Working Group . . . . . . . . . . 111

6.1.1 The Fluid Applet . . . . .. . . . . . . . . . . . . . . . . . 111

6.1.2 Ongoing Developments within the RTFM Working Group . 112

6.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusions 114

A Ruleset file for “fluid” 117

B Overview over the Flow MIB 121



List of Figures

1.1 SNMP Counter Graph generated with HP OpenView . . . .. . . . 18

1.2 Web based traffic analysis withmrtg . . . . . . . . . . . . . . . . . 22

1.3 Network management with Intraspection: Map Discovery . . . . . . 24

1.4 Network management with Intraspection: Counter Graphing in Java 25

2.1 Times in the Packet Train Model . . . . . . . . . . . . . . . . . . . 28

2.2 Defining a flow based on a timeout during idle periods . . .. . . . 31

2.3 Flow–Measurement in the layered model of the Internet . . . . . . . 36

3.1 The Cisco FlowSwitching / FlowDataExport Architecture . .. . . . 44

3.2 NetFlow Statistics on the Stuttgart Core Internet Router . . . . . . . 46

3.3 The RTFM Traffic Flow Measurement Architecture (RFC2063) . . . 48

3.4 Different LayersNeTraMetcan use for Flow Endpoints . . .. . . . 51

3.5 Flow Time Definitions withNeTraMet . . . . . . . . . . . . . . . . 54

3.6 Sample flow data file as generated by NeMaC . . . . . . . . . . . . 55

3.7 Nifty displaying the packet count vs. the flow duration . . .. . . . 57



8 LIST OF FIGURES

3.8 Nifty displaying the packet rate vs. the flow duration . . . . . . . . 57

3.9 Nifty displaying the packet percentage vs. the flow duration . . . . . 58

3.10 Nifty displaying the byte count vs. the flow duration . . . .. . . . 58

3.11 Nifty displaying the byte rate vs. the flow duration . . . . .. . . . 60

3.12 Nifty displaying the byte percentage vs. the flow duration . .. . . . 60

3.13 The OC3MON Hardware . . . . .. . . . . . . . . . . . . . . . . . 62

3.14 ATM Header Structure at the UNI. . . . . . . . . . . . . . . . . . 64

3.15 Which ATM Cells are Captured .. . . . . . . . . . . . . . . . . . 66

3.16 How Data is retrieved from OC3MON . . . . .. . . . . . . . . . . 69

4.1 SNMP Agents and Managers . . . . . . . . . . . . . . . . . . . . . 76

4.2 SNMP Agent Functionality . . . .. . . . . . . . . . . . . . . . . . 77

4.3 SNMP Proxy Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Conceptual Difference between Java and CGI Programs . . . . . . . 81

4.5 Java Execution Environment . . . . . . . . . . . . . . . . . . . . . 84

4.6 The Java Development Environment . . . . . . . . . . . . . . . . . 85

4.7 Relaying SNMP communication via the SNMP applet server (SAS) 91

5.1 Environment in which the Applet is running . .. . . . . . . . . . . 99

5.2 How the “fluid” Applet fits in the IETF RTFM Architecture . . . . . 100

5.3 Structure of the Java Sourcecode . . . . . . . . . . . . . . . . . . . 102

5.4 Example of how the Applet is included into a Web Page . . . . . . . 103



LIST OF FIGURES 9

5.5 Status frame of the “fluid” applet after succesfully connecting to the

meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 The “fluid” applet displaying information about flows . . . .. . . . 107

5.7 A “fluid” window containing information about a particular flow . . 108

B.1 Overview over the RTFM Flow MIB . . . . . . . . . . . . . . . . . 121



List of Tables

2.2 Flow–oriented vs. short–lived types of internet traffic . . . . . . . . 41

3.1 Data Structure of Entries in the Flow Table of theNeTraMetMeter . 53

3.2 Overview of the presented Flow–based Applications . . . . . . . . 74

4.1 Where Applets are allowed to connect to when using Sockets . . . . 90

4.2 Where Applets are allowed to connect to when using URL connections 90



Table of Abbreviations

100VG–AnyLan 100 Mbit/s Network Technology by Hewlett–Packard

AAL ATM Adaption Layer

AS Autonomous System

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

BER Basic Encoding Rules

CGI Common Gateway Interface

CMIP Common Management Information Protocol

CPCS Common Part Convergence Sublayer

CPU Central Processing Unit

FDDI Fiber Distributed Data Interface

FIN Finish Flag (TCP header)

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IFMP Ipsilon Flow Management Protocol (RFC1953)

IOS Router/Switch–Betriebssystem von Cisco

IP Internet Protocol

IPv4 Internet Protocol Version 4 (standard IP)

IPng/IPv6 Internet Protocol Next Generation / Version 6

ISDN Integrated Services Digital Network

MIB Management Information Base

NeTraMet Network Traffic Meter



12 TABLE OF ABBREVIATIONS

NeMaC NeTraMet Manager / Collector

MPOA Multiprotocol over ATM (ATM Forum)

NLANR National Laboratory for Applied Network Research

OC3 ATM Optical Carrier 3 (150 Mbit/s ATM)

OID Object Identifier

OSI Open Systems Interconnection

PDU Protocol Data Unit

PTI Payload Type Identifier

PVC Permanent Virtual Circuit

QoS Quality of Service

RFC Request For Comments

RSVP Resource Reservation Protocol

RUS Rechenzentrum der Universität Stuttgart

RMON Remote Monitoring (Standard for)

RTFM Realtime Traffic Flow Measurement (Working Group within the

IETF)

SAR Segmentation and Reassembly

SAS Secure (SNMP) Applet Server

SDU Service Data Unit

SNMP Simple Network Management Protocol

SNMPv2 Simple Network Management Protcol Version 2

SVC Switched Virtual Circuit

SYN Synchronize Sequence Numbers Flag (TCP Header)

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

UDP User Datagram Protocol

vBNS Very High Speed Backbone Network System

VBR Variable Bit Rate

VCI Virtual Channel Identifier

VM Virtual Machine

VPI Virtual Path Identifier



TABLE OF ABBREVIATIONS 13

WBEM Web Based Enterprise Management

WWW World Wide Web



14 TABLE OF ABBREVIATIONS



Chapter 1

Introduction

The term “flow” is being used in at least three different contexts in the Internet

environment: First, it is used to describe traffic for resource reservation protocols

like RSVP. Second, “Flows” are also considered as a unit for traffic switching. Fi-

nally, flows are a being used as a rather new category in network measurement and

analysis.

In this work, the focus is on using flows for traffic measurement and analysis.

Before introducing flows in chapter 2, as a motivation we give an overview of typical

network management tools. We also describe the use of the Web technology as an

up–to–date framework for such applications.

1.1 The Need for Traffic Analysis

During the last years, the Internet has experienced a rapid growth. New multimedia

applications demand for increased bandwidth. The World–Wide–Web with its intu-

itive interface has brought the Internet close to the masses and the number of users

has therefore dramatically increased. Because of this, faster and faster backbone



16 Introduction

networks (like for example the vBNS1) are being deployed. But not only the back-

bone network speed is rising. For multimedia applications, the traditional Ethernet

is more and more often replaced by network technologies like 100–base–T (also

known as “Fast Ethernet”), 100VG–AnyLan, ATM, FDDI etc. For traffic analysis,

measurement and accounting on these high speed networks new applications are

needed that can cope with the increased traffic.

1.1.1 Traffic Analysis and Network Monitoring

Problems arise for example withtraffic analysis, especially when it comes to the

debugging of a faulty network. On standard Ethernet, most network administrators

use the “tcpdump” tool written by Van Jacobson2 to locate machines that transmit

excessive data or to debug why one host is not able to communicate with another.

Although it is possible to set filters for the “libpcap” 3 packet capturing library

used bytcpdump the tool needs a fast machine and generates a high CPU and bus

load. It makes use of a special “promiscuous” mode for the network adapter. In this

mode, every received packet is passed to the networking software, not depending

on whether it was addressed to the machine or not. The resulting interrupt4 and

CPU load can get very high with fast line speeds. An ATM OC3 connection —

which is more or less the standard for desktop ATM connections today — has a

transfer rate of 150 Mbit/s. This is far too much for a standard PC or workstation

to monitor in realtime withtcpdump. New tools and methods are needed to allow

traffic monitoring and analysis on such high speed links.

An additional difficulty gets more and more important when bigger amounts of data

have to be analyzed: In order to resolve a problem, the administrator has to have

an idea of what he is searching for in advance. This makes the debugging difficult.

Tools that can for exampleimmediately identify traffic sources that produce excess

1vBNS = very High Speed Backbone Network Service, seehttp://www.vbns.net
2The source code fortcpdump is available athttp://www-nrg.ee.lbl.gov/
3Thelibpcap library is available fromftp://ftp.ee.lbl.gov/libpcap-*.tar.gz.
4On UNIX systems, usually a hardware interrupt is generated for each received packet



1.1 The Need for Traffic Analysis 17

traffic and that can give aninstant overview over the traffic stateon a given link

would be helpful here.

Traffic monitoring is an important field as well. Monitoring is not only useful to

get information about the kinds of applications that are used on the network, it is

essential for security measurements. One of the most important steps when setting

up a secure environment is the installation of a monitoring system. This system can

for example be used to trace back the path of an intruder that is being found on a

system or it can be used to get information about attacks as early as possible.

1.1.2 Planning of Infrastructural Development

Another field in which network analysis is important is the planning of the infras-

tructure. A network administrator needs to know how loaded the network backbone

is, and the more exact information he has about the nature of the traffic on his net-

work, the better he can determine what he will have to improve next. For this reason,

it is important to have as detailed measurement information as possible. Conven-

tionally, the network administrator would just check counters (for example using

SNMP tools like HP OpenView, shown in Figure 1.1, or possibly RMON probes)

for his link or maybe just watch collision LEDs to determine how loaded the link is.

Once he decides that there are too much collisions, he will try to replace the medium

by a faster one or split it into multiple segments. However, this does not allow him

at all to determine the applications that are responsible for the traffic growth. If for

example the traffic growth on a LAN would be only due to an increased number of

people surfing the World Wide Web, the administrator would eventually better add

a new proxy server for this LAN segment than just split it into two segments.

Not less important is to docontinued measurements over longer periods of time.

Doing this allows the network adminstrator to get early insights in trends for new

protocols being used. New kinds of applications often result in new needs for the

networking equipment. Therefore it is important for the administrator to recognize

those trends as soon as possible.



18 Introduction

Figure 1.1: SNMP Counter Graph generated with HP OpenView

1.1.3 Traffic Measurement and Accounting

The commercialization of the Internethas not only resulted in an increase of the

number of users. Probably the most important problem that arises is theaccounting

of the transferred data. Traditionally, the Internet was a network between research

and educational institutions. The connected institutions usually payed a fixed fee

for their connection. Nowadays, Internet providers would like to charge their clients

depending on the volume of data they transfer. To do this, they need powerful tools

that are able to count the transferred amount of data. The higher the line speeds are,

the more difficult this is.

It is still a common practice for providers to charge fixed monthly fees for Internet

access. Often the only reason for this is that they have no means to do an exact

accounting for all clients.

Traditional solutions for volume based traffic charging include:

1. Reading the SNMP Octet Counters from the Routers



1.1 The Need for Traffic Analysis 19

Most if not all modern networking equipment offers the possibility to gather

statistics about the amount of data that was transferred via its interfaces. For

this purposes, usually counters for bytes and/or packets that are transferred

over each interface are provided. These counters can be queried using the

SNMP procotol.

The disadvantage of this is that only the total amount of traffic transferred

can be accounted. It is not possible to apply different prices depending on the

kind of traffic. Additionally, since the SNMP counters are only maintained

once for each hardware port, a separate port is necessary for each client that is

to be accounted. These additional expenses for hardware make this solution

unattractive.

2. Using RMON / RMON2 probes

The RMON standard, which is described in RFC1757 [39], was designed

to provide proactive monitoring and diagnostics for distributed LAN–based

networks. Special monitoring devices, called agents or probes, allow the

monitoring of critical network segments and to set off user–defined alarms.

RMON has been implemented in special stand–alone hardware, embedded in

switches and as a program running on PCs or workstations. Communication

with the probe is implemented using the SNMP protocol.

In theory, the RMON standard would be suitable for higher line speeds. It has

however shown that it is difficult to adapt RMON to protocols like 100VG–

AnyLan or ATM. No RMON implementations for those protocols are avail-

able at this time. For ATM, a first attempt was AMON (ATM Circuit Steering

MIB), which defines a way to copy traffic from a virtual circuit (VC) to a

location where an external probe can decode it. AMON — which was pro-

posed by Fore — has been discussed in the ATM Forum since summer 1995.

However, progress has been so slow that the forum threatened to suspend the

AMON MIB group’s work. In march 1996 Cisco — although one of the

founder members of the ATM Forum — has surprised the networking com-

munity by submitting a draft for an “ATM RMON MIB” to the IETF rather

than to the ATM Forum. Cisco has developed the ATM RMON MIB without



20 Introduction

discussing it with other manufacturers of ATM hardware. This unusual way

of presenting their proposal has been the reason for controversial discussions.

It is therefore not very likely that their proposal will become a standard in the

near future.

3. Using a PC or Workstation running tcpdump

The tcpdump tool mentioned above can be used to monitor all traffic that

passes through a network adapter in a PC or workstation. Using it permits

as well to count the data that is received by this network adapter. However

as mentioned above the interrupt load usingtcpdump is a problem when the

data is being received at higher line speeds. When the load is getting too high,

the probability for packet losses is growing. This technique is used at a local

Internet provider in Stuttgart5, and it was found that even on transfer rates of

about 10 Mbit/s (standard ethernet) there is already a probability for packet

loss in the range of 1%. Obviously this solution is only practicable for lower

line speeds. It nevertheless offers maximum flexibility since a user–written

program can be used to analyze a trace of all the headers from the packets the

machine receives.

5Please contact the author for details about that installation



1.2 The WWW as a Framework for Network Management 21

1.2 The WWW as a Framework for Network Man-

agement

A trend that has just begun on the Internet is to integrate all kind of information

systems into WWW or intranet environments. This is also interesting for network

management and monitoring. The WWW technology offers an ideal user–interface

for management applications. Data that is put on a web server immediately is ac-

cessible from everywhere on the network, without having to install any additional

software on a lot of machines.

Recently, a broad variety of products for web based network management has been

announced6. The range goes from solutions that provide graphs for SNMP coun-

ters to complete management environments that allow the modification and status

display of manageable workstations, routers etc.

1.2.1 Traffic Graphing with “mrtg”

One example for a web–based network monitoring solution is “mrtg” (Multi Router

Traffic Grapher), a rather small program written in Perl and C [19, 21] by Tobias

Oetiker. The author has made this program available within the public domain, and

therefore it is already widely in use. It can partly replace functionality for which it

was earlier necessary to buy expensive commercial network management solutions.

The program itself consists of two parts. A first program is called in regular intervals

and queries a set of SNMP variables. Those values are stored in a file on the web

server. This file is then processed by a second program and a web page with graphs

depicting the counters evolution is generated. Figure 1.2 shows a screenshot of

such a web page generated with “mrtg”. The program is easy to install and highly

configurable for use with different networking equipment. Since it is available as

source code, it is also quite easy to extend.

6Seehttp://www.mindspring.com/�jlindsay/webbased.html



22 Introduction

Figure 1.2: Web based traffic analysis withmrtg



1.2 The WWW as a Framework for Network Management 23

1.2.2 Network Management with “IntraSpection”

An example for a complete management solution is “IntraSpection” by Asanté

Technologies7. The product is also usable for the generation of graphs of SNMP

variables, however its design is quite different from “mrtg”. It is not designed for a

long–term analysis of traffic counters but to provide instant access to management

information. One main functionality is the so called “network map discovery”. Fig-

ure 1.3 shows how “IntraSpection” can be used to display an overview of all SNMP

capable networked equipment in an IP subnet. The program can be used to browse

the available information on the hosts as well as to produce graphs over counters.

Those graphs are generated in realtime using a Java applet, as shown in Figure 1.4.

Another important feature that comes with “IntraSpection” is the SNMP trap man-

agement which can be used to notify the network adminstrator of events he has to

react on immediately.

1.2.3 Web Based Enterprise Management

Currently, many companies including Cisco, Compaq, Intel and Microsoft are work-

ing on an interesting framework. “Web–based Enterprise Management” (WBEM)8

is one of the main reasons why web based network management products like the

one we just saw, will probably become important in the near future.

The key purpose of the WBEM initiative is to consolidate and unify the data pro-

vided by existing management technologies. The focus is on solving real enter-

prise issues by allowing problem areas to be tracked from end to end — from

the user/application level through the systems and network layers to remote ser-

vice/server instances. However, WBEM does not attempt to replace existing man-

agement standards such as SNMP or CMIP, but it provides a framework into which

those techniques fit.

7A demo version of IntraSpection is on the WWW athttp://www.intraspection.com
8A web page is provided by the WBEM initiative athttp://wbem.freerange.com



24 Introduction

Figure 1.3: Network management with Intraspection: Map Discovery



1.2 The WWW as a Framework for Network Management 25

Figure 1.4: Network management with Intraspection: Counter Graphing in Java



26 Introduction

The networking hardware will be only one part of the managed objects in a net-

worked enterprise. Obviously it will be easy to integrate existing web based net-

work management applications in such a framework, therefore the effort seems to

be a good investment in the future.



Chapter 2

Flows

2.1 Flow Definitions

2.1.1 Historical Definitions of Flows

The Packet Train Model

One of the first models of a traffic flow was created by Jain [11] in hispacket

train model. He defines apacket trainas a burst of packets arriving from the same

source and heading to the same destination. If the spacing between two packets

exceeds some inter–train gap, they are said to belong to different trains. In his

model, the inter–train time is a user parameter, dependent on the frequence with

which applications use the network. The inter–car arrival for a train is a system

parameter and depends on the network hardware and software.

This model reflects the fact that much of the communication inside a network in-

volves in fact many packets spaced closely in time that are exchanged between the

same two endpoints.



28 Flows

AB ABAB AB ABAB

Inter-
Train

Inter-Car

Figure 2.1: Times in the Packet Train Model

Defining Flows based on TCP Connections

The first efforts to define apacket trainor traffic flow on the network focused on

connections. When using the TCP protocol, all connections are handled via the

SYN and FIN control mechanism. It is therefore possible to watch the traffic on

a network, check for SYN and FIN packets and thereby aggregate everything with

identical service number, source and destination address etc between the SYN and

FIN packet into one “flow” [25]. The strength of this approach is that the detection

of beginning and end of a TCP connection based flow is relatively easy.

2.1.2 Motiviation For a New Flow Definition

The practical use of such connection based flows is however restricted. Although

the theory exists already for a while, it has never really been used in implementa-

tions. This is due to some problems which are related to the nature of the Internet

environment:

1. The Internet being aconnectionless datagram environment, dependence on

connection–oriented information will often interfere with operational stabil-

ity. If routes change during a flow, new routers will carry datagrams that

never saw the transport layer SYN/SYN–ACK packets, and routers that did



2.1 Flow Definitions 29

see earlier datagrams in a flow will never see the FIN/FIN–ACKs. Flow state

information that is dependent on this data will become obsolete and never

expired in such cases.

2. IP Fragmentationwould also pose problems since all but the first fragment

lack the TCP/UDP port information and therefore it would be impossible to

track the fragmenented parts of a packet into a higher layer flow.

3. Not all traffic makes use of connection oriented transport layer protocols. The

trend on the Internet is that more and more lightweight protocols are used that

do not use the TCP mechanism for connection setup and teardown. Especially

new multimedia applications usually bring their own concepts for connection

handling.

4. Finally, new link level technologies, e.g. ATM, will not have access to trans-

port layer informations; any Internet related transmission decisions will have

to rely only on IP level information. In particular, until end–to–end ATM is

a reality, IP gateways attached to ATM style networks will have to multiplex

possibly many IP flows onto ATM. Mapping higher level (IP) flows to under-

lying link level virtual circuits (VCs) will require effective setup, maintenance

and timeout strategies as well as accounting schemes.

Having seen the efforts to extend thepacket trainmodel of flows to the transport or

application layers [1, 22, 25] or focusing on TCP traffic flows [9, 31], Claffy, Braun

and Polyzos have introduced a more generalized, comprehensive methodology of a

timeout–based flow characterization on the IP layer [14]. Their flow definition is

also based on the packet–train model, but in contrary to the other models mentioned

they avoid to use connection information.

The IP layer, the “heart” of internet technology, is a connectionless network layer.

Not to use connections for routing or switching was one of the main reasons why

the Internet could grow as rapidly as it did. Any connection oriented service on the

Internet is implemented in the transport protocol that is running on the end hosts



30 Flows

only. Routers on the Internet are simple and fast since they just rely on the IP

headers of the packets. This has shown to scale very well. In the same way, the

connectionless techniques are scaleable for measurement and analysis applications.

The classification of networks into either connectionless or connection oriented

ones is pretty restrictive. In particular it is obviously not true that in a connec-

tionless network all datagrams are completely independent. The datagrams are cer-

tainly switched independently, but it is usually the case that a stream of datagrams

between a particular pair of hosts flow through a particular set of routers. Hence the

idea to define aflow asa sequence of packetsmatching the same criteria is a useful

concept for an abstraction.

By using this abstraction of connectionless traffic flows, a set of new applications

will become possible. First of all, we can use the flows for network monitoring,

measurement and analysis, as primarily shown in this report. However, they are

also interesting for routing, switching, as we will see in section 2.5 as well as for

congestion control ( [20], pp. 395 ff).



2.2 A Flow Model that is Suitable for the Internet 31

2.2 A Flow Model that is Suitable for the Internet

The flow model described by Claffy, Braun and Polyzos [14] defines a flow from a

rather abstract point of view: A flow isa sequence of packets matching certain

criteria, exchanged between two entities on a network.An example for such a

flow could be all packets travelling through a certain point of a network that have

identical source and destination IP network addresses.

��
��
��
��Packet Arrivals Packets that match the flow criteria

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Flow Starts Flow stops Timeout
expires starts

A new Flow

Flow Timeout Checkpoints

Figure 2.2: Defining a flow based on a timeout during idle periods

Figure 2.2 shows the timings that are relevant for this definition of a flow. The

circles on the time axis depict the arrival of data packets. The data packets which

match the flow criteria are shown as red circles. The green arrows mark the “flow

timeout checkpoints”. At those points we check whether information that matches

theflow criteria(or flow specification) has been received since the last checkpoint.

If information was received, the flow is called “current” or “ active”. If no informa-

tion for a flow was received during the interval, the flow timeout expires. The flow

is then called “inactive”. Any new packets that match the same flow criteria will

then belong to a new flow.



32 Flows

Two parameters in this model have to be further investigated. The first is theflow

specification, which is essential for the classification of arriving packets into flows,

is to be examined. The second is the value of theflow timeout, which can be varied.

It is interesting to see the influence this variation has on flow measurements. In the

following sections, we will investigate those two parameters in detail.



2.3 Flow Specifications 33

2.3 Flow Specifications

2.3.1 What are Flow Specifications?

In the previous section, we described the basic idea behind a traffic flow, which is to

aggregate traffic thatmatches certain criteria. What we have not spoken about yet

is how those criteria can be defined.

The most important advantage of our very general definition is that the communi-

cating entities are not yet specified any further. Until now, we only assumed that

they are two machines on the network that communicate with each other. However,

the entities do not have to correlate with machines (i.e. network addresses) but they

can as well be whole subnets of machines, classes of applications or autonomous

systems1. In fact, anything that can be used to distinguish data packets is a potential

criteria. In the following sections we will further specify which criteria can be used

for the so called “flow specification”.

A first proposal for aflow specificationwas given by Partridge in RFC1363 [29].

This proposal is however mainly motivated by the ideas of resource reservation

functionality. Therefore, Partridgesflow specificationis focused on Quality of Ser-

vice (QoS) parameters which shall be used for the reservation of bandwidth for

certain kinds of multimedia traffic. Theflow specificationhe proposes is to be used

by the network for admission control and resource allocation purposes.

For network measurement and analysis — our main interest — we need a different

approach. Our aim is to aggregate as much information as possible about the high

amount of data that is transferred and at the same time to use as less memory for

this aggregation as needed. Since we usually do not know in advance what we are

searching for and what we want to measure, we need a flexible way to define what

kinds of traffic we want to aggregate.

1An autonomous system (AS) is an organizational entity of networks/machines



34 Flows

2.3.2 Flow Directionality

First, one can define a flow asunidirectionalor bidirectional. While TCP traffic

always is connection oriented and therefore always must be bidirectional, it still

often exhibits strong asymmetries in the traffic profile of the two directions. Each

TCP flow from A to B also generates a reverse flow from B to A, at the very least

for small acknowledgment packets.

For data aggregation, we may or may not be interested in measuring those two

flows separately, therefore measurement and analysis applications should ideally be

configurable in regard to this parameter2.

In the Internet environment is is possible to use a unidirectional definition of flows,

i.e., bidirectional traffic between A and B is to be seen as two separate flows: traffic

from A to B, and traffic from B to A. This allows to get interesting insights for

the analysis of routing issues or traffic characteristics. The aggregation of those

two flows into one unidirectional flow could on the other hand be sufficient for

accounting. Obviously it makes sense to allow the unidirectional defintion, since

a later transformation of unidirectional flows into a bidirectional flow is always

possible.

2.3.3 One vs. Two Endpoint Aggregations of Traffic

The second aspect of a flow is related to its endpoints. As mentioned the model

allows us not only to examine data exchange between two entities on the network,

it is as well possible to aggregate all traffic that originates from a specified entity

or that is addressed to a specified entity. Such flow specifications are called “sin-

gle endpoint flows” in contrary to the “double endpoint flows”, where source and

destination addresses are being specified.

An example where a single endpoint flow is interesting is the aggregation of all data

transferred from a given destination network number. Those measurements could

2Claffy, Braun and Polyzos used unidirectional flows for their analysis in [14]



2.3 Flow Specifications 35

be compared to the traffic aggregated between this network number and a given

second network number to calculate the percentile of traffic from the given network

to another network.

2.3.4 Types of Flow Endpoints

An aspect already mentioned above, and certainly the most important criteria for

flow specificationsare the flow endpoints. The endpoint specification somehow has

to describe the communicating entities. Potential granularities for this description

include aspects such as traffic by

� Hosts, identified by

– Network layer address (e.g. IP address)

– Link layer address (e.g. ethernet address)

– Symbolic hostname

� Networks, identified by

– Network number

– Domainname

� Abritrary groups of hosts

� Traffic sharing acommon pathon the network, identified by

– Interface number on a backbone node

– ATM connection identifiers (VCI/VPIs)

Various additional granularities could be defined, depending on the type of the local

network installation and the demands of the user. The only common critera that

all granularities have to fulfill is that it must be possible to check for each received

packet whether it matches the critiera for the flow or not.



36 Flows

Internetwork

Transport

Application

Station A

Router

Flow Meter

Bridge

Station B

TCP, UDP, ...

IP

Network
Technology

(Ethernet, ...)

Figure 2.3: Flow–Measurement in the layered model of the Internet

Figure 2.3 illustrates where the flow endpoints could be positioned in the layered

communication model of the Internet. If flows are to be specified with a granularity

that reaches the application layer, the measuring entity will of course also have to

have knowledge about the format of the data of this layer. In the TCP/IP model in

order to define flows based on the transport layer, the port identifier field of the TCP

header would have to be analyzed.

The granularities do not necessarily have an inherent order, as a single user or ap-

plication might straddle several hosts or even several network numbers. Generally,

flow criteria dont have to be restricted to single network layers. It is also possible

to specify a flow using acombination of different criteriaon several layers, for ex-

ample one could aggregate all traffic that is generated by a specific application on a

specific machine.

The possibility to define a flow in such a variable way is the huge advantage and

strength of this model. When developing measurement applications, often it will

show that one does not know exactlywhat should be measured in advance. The

configurability of this model reflects this and by keeping as general and abstract as



2.3 Flow Specifications 37

possible, the model is prepared to be usable for all kinds of analysis applications.



38 Flows

2.4 The Flow Timeout Parameter

As illustrated in Figure 2.2, a flow is “current” as long as incoming packets for it are

not separated in time for more than the length of the interval between two timeout

checkpoints. The length of this interval therefore is a parameter in this definition of

flows that is worth further investigation.

In traditional measurements for traffic characterization, the times that are to be mea-

sured are usually ranging from nanoseconds to about one second. Many studies

have for example focused on the mean inter–arrival time of packets. For measuring

times in the range of micro– to nanoseconds, the granularity has to be very fine. In

contrary, the time intervals we are talking about for flow measurements are rather

macroscopic. Reasonable values for the flow–timeout are in the range of seconds to

minutes.

Several people have worked on the timeout parameter. For their studies of wide–

area traffic at the transport level, Caceres et al. [31] have used a 20 minute timeout,

motivated by the FTP idle timeout value of 15 minutes. After comparing their

results to a 5 minute timeout, they found only minimal differences for the number

of established flows. Estrin and Mitzel [9] also compared timeouts of 5 and 15

minutes and found only little differences for the flow durations at those two values.

Acharya and Bhalla [1] used a fixed 15 minute flow timeout.

In [6] and [14], Claffy, Braun and Polyzogos extensively examine Internet traffic

on a large vBNS backbone node using different values for the flow timeout. One

interesting result they found is that the majority of the flows between two hosts on

the Internet don’t even last longer than ten seconds. To examine the significance of

the parameter, they used flow timeouts of 4, 32, 256 and 2048 seconds and compared

the measurements.

Shorter timeouts tend to split longer flows into several short ones, so naturally

smaller timeouts will yield a larger number of flows and a greater proportion of

flows of smaller duration when analysing the traffic. However, even with a 2048



2.4 The Flow Timeout Parameter 39

second timeout — which is essentially considered to be infinitive compared to the

3600 second data duration during which the data was captured — it was found in [6]

that more than 27% of the flows consisted of a single packet of less than one hun-

dred bytes. For timeout values of 64 seconds or less, 90% of the flows showed less

than 50 packets, 5.5 kilobytes and 100 seconds of duration. From the data set it

was known that the 80th percentile of the flows reflects about 40 packets or less and

about 3.4 kilobytes of data or less. This led to the conclusion that a value of about

64 seconds should be reasonable to gather most of the flows.

TheNeTraMetimplementation, which we will introduce in chapter 3 uses a default

value of 600 seconds for the timeout. This value can and should, depending on the

traffic and host memory, be modified by the user.

It is evident that the choice of the flow timeout value always has to be dependent

on the flow specification, the traffic that is to be measured and the memory that is

available for the flow table. On a machine with lots of memory available that is

used on a network segment where only a few flows per second would be measured,

one would of course choose a much higher value for the flow timeout parameter

than on a heavily loaded measurement point on a high–speed backbone network.

In fact, for real measurement systems, it would eventually be interesting to do an

automatic adjustment of this parameter so that always all of the available memory

is used. However, no existing application has implemented such a mechanism yet.



40 Flows

2.5 Flows and Protocols

The flow methodology is not only interesting for measurement applications, it has

also been discovered by protocol designers. As already mentioned in the intro-

duction, flows can be used to accelerate switching and routing. To ameliorate the

effectiveness that “flow switching” has, protocol designers have started developing

special flow–oriented protocols. In the “IPng” (Internet Protocol Next Generation,

IPv6) protocol for example a special field in the header has been reserved for future

flow based applications. Another, more concrete development is Ipsilons flow man-

agement protocol, which is used to exchange flow–based routing policies between

Ipsilon switches.

2.5.1 The IPng Flow Label

An important perspective for the use of flows comes from the the “IPv6” (also

known as “IPng”) protocol. It includes a 24–bit “flow label” field. This still remains

somewhat experimental, but might in the future be used to simplify the determina-

tion which flow a packet belongs to.

The idea of this flow label field is that it may be set by applications to indicate

the fact that some traffic is to be considered belonging to the same flow even if the

application is exchanging the data without making use of the TCP (this would allow

to identify the integrity of the flow by looking at TCP port numbers).

There are no rules how an application has to set the flow label field, it is completely

left open to the programmer. Routers could one day make use of it, however since

there are not yet any applications using it, it is not yet of much importance.

2.5.2 Ipsilon Tagged Flows

Ipsilons “Flow Labelled IP” approach to putting IP traffic on the ATM substrate

[30] uses the concept of traffic flows to aggregate connectionless IP traffic onto a



2.5 Flows and Protocols 41

connection oriented ATM network.

What an Ipsilons flow–switch basically does is the following: It transparently mon-

itors incoming IP packets and tries to detect flows of traffic matching the same

criteria. Since it is already known that some kinds of traffic are only short–lived

(for example DNS nameserver queries usually will not consist of more than some

packets) the traffic can be categorized by TCP ports (i.e. by applications). For ap-

plications that generally will have longer duration traffic, flows are defined. For

this, the fields in IP/TCP/UDP headers determining the routing decision, such as

type of service, protocol, source address, destination address, source port, destina-

tion port etc. are used. Table 2.2 shows the classifcation that Ipsilon proposes for

distinguishing the flows.

Flow–Oriented Traffic Short–Lived Traffic

? File transfer protcol (FTP) data

? Telnet data

? HyperText Transmission Protocol

(HTTP) data

? Web image downloads

? Multimedia audio/video

? Domain Name Service (DNS)

queries

? Simple Mail Transfer Protocol

(SMTP) data

? Network timing protocol (NTP)

? Post Office Protocol (POP)

? Simple Network Management

Procotol (SNMP) queries

Table 2.2: Flow–oriented vs. short–lived types of internet traffic

Whenever a packet is received by the Ipsilon switch, it is reassembled and submitted

to the control processor for forwarding. The processor forwards the packet in the

normal manner, but it also performs a flow classifcation on the packet to determine

whether future packets belonging to the same flow should be switched directly in

the ATM hardware or continue to be forwarded hop–by–hop by the router software.

Flow classification depends on policies local to the switch. The flow classifier in-

spects the contents of the fields that characterize the flow and makes its classification



42 Flows

decision based upon policies expressed in a table. Usually, the TCP port number

will be used to identify the application that is responsible for the traffic. Thereby it

is for example possible to configure the switch in a way so that flows belonging to

FTP data connections will be switched but DNS queries will still be forwarded as

datagrams.

The protocol that Ipsilon uses to exchange flow information between Flow Switches

is called “Ipsilon Flow Management Protocol” (IFMP) and is specified in RFC

1953 [28]. The transmission of IPv4 datagrams over an ATM link is described

in RFC1954 [27], both in a default manner or in the presence of flow labelling with

IFMP.

In their paper [30], Newman et. al describe the performance of flow classification

and they examine the suitability of standard internet applications for flow switching

in detail. For this, they use the same data samples as Claffy, Braun and Polyzos did

in [14], therefore the results should be comparable.

In the samples they examined about 84% of the packets and 91% of the bytes trans-

ferred were recognized as suitable for flow switching with the Ipsilon switch. They

found that after an initial startup phase of 60 seconds about 92 flows per second

were established. The average number of flows in the flow table was about 15,500.

They also compared those results to a setup where all packets were classified for

switching. Then a mean number of 422 flows per second would have to be estab-

lished with an average of 42,000 entries in the flow table. Whether this could be

done on an economic basis will surely depend on the architecture of the switch as

well as on the price it costs to establish a new flow – however it leads to the conclu-

sion that the effort to distinguish between different types of applications before the

establishment of flows makes sense.

What is also worth mentioning is that Ipsilon switches already include a Web server

and software that allows to configure and monitor the switch operation via a WWW

browser. Because of this they are already well suited for the web–based enterprise

management model that was presented in the introduction.



Chapter 3

Existing Flow–based Measurement

and Analysis Applications

In this chapter, we will focus on existing applications for network measurement

and analysis that are already using the flow concept. The concept is still quite new,

so there are not yet too many of them. The most well known, since it is imple-

mented in all newer Cisco switches is probably Ciscos “NetFlow Data Export”.

Also quite common is “NeTraMet/NeMaC”, which is the first set of programs im-

plementing the IETF architecture for traffic measurement. A more experimental

project is NLANRs “OC3MON”. This development is interesting because of its

hardware which allows to analyze traffic on 150 Mbit/s ATM OC3 links carrying IP

traffic which is encoded on top of ATM AAL5 as described in RFC1483 [10].

3.1 Cisco: NetFlow Data Export

Cisco “NetFlow Switching”, which is available for the 75xx and RSP–7000 plat-

forms in the IOS 10.3 and later releases includes an accounting mechanism that al-

lows network managers to track network traffic on an end–to–end or per–application

basis. The feature, which is referred to as “NetFlow Data Export”, is using the same



44 Existing Flow–based Measurement and Analysis Applications

flow table which the switch already maintains for flow switching and exports it via a

proprietary, connectionless protocol to a management PC or workstation. Flow de-

scriptors are used to integrate route lookup, access filtering and IP accounting into

one single fast lookup operation1. Figure 3.1 shows the architecture of the system.

Since 100% of the traffic that is routed via the Cisco switch is assigned to flows

in the flow table, it suffices for NetFlow Data Export to broadcast the information

about each flow that is expired from the table to the management machine in order

to account 100% of the transferred data.

NetFlow
Statistics DataExport

NetFlowNetFlow
Switching

Task

Cache
NetFlow

Accounting

Queueing
Priority

Access
List

Route
Table

Switching Security Queueing

Accounting
Data

Flow Specifications

First
Packet

Further

Packets

UDP Packets

Figure 3.1: The Cisco FlowSwitching / FlowDataExport Architecture

However, the solution bears some problems:

� First of all, the connectionless (UDP) transmission of flow data can not guar-

antee that all data being broadcast is received by the managment station.

� The flow specificationused by Cisco isfixed to IP addresses of source and

destination machine plus port numbers. This makes sense for switching,

1Note that this only accelerates switching when access filtering and accounting are enabled on

the switch



3.1 Cisco: NetFlow Data Export 45

however it may be a severe limitation when it comes to traffic monitoring

and analysis. Far more data is produced and has to be transmitted via the

connectionless path than it really would be needed for accounting.

A solution for the second problem might be to reduce the amount of data at a later

stage by preprocessing it with custom programs, but on high speed ATM links the

sheer amount itself can become a problem, especially since the management station

usually is connected via a standard 10 Mbit/s ethernet or even only over a serial port.

Because of this unability to use user–defined flow specifications, “NetFlow Data

Export” won’t probably scale very well for accounting, measurement and analysis

applications.

It also has to be mentioned that Cisco has not deigned to say what criteria are used

for flow identification and/or timeout. This makes it difficult to use the measurement

data for scientific analysis. Nevertheless, the flow table maintained by the Cisco

switches allows some interesting insights into Internet traffic characteristics. Figure

3.2 shows what kind of information can be measured. The measurements in this

figure describe the traffic that is flowing through the BelWue core router in Stuttgart.



46 Existing Flow–based Measurement and Analysis Applications

st1-gw#sh ip ca f

IP packet size distribution (13527M total packets):

1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

.000 .314 .075 .055 .042 .014 .022 .012 .009 .011 .006 .045 .010 .004 .003

512 544 576 1024 1536 2048 2560 3072 3584 4096 4608

.003 .007 .171 .057 .128 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 3356 active, 29412 inactive, 483496404 added

180728533 tcp fin, 52221911 tcp rst, 157980484 timeout

91934155 dns, 0 lru, 627965 counter wrap

483493048 flows exported, 0 not exported, 21626175 export msgs sent

flow alloc failures: 0 pkts, 0 bytes

3 cur max hash, 1819 worst max hash, 3408 valid buckets

0 tcp reordered flows, 0 reordered pkts, 0 syn retries

0 tcp backed-off flows, 0 backoff pkts, 0 backoff secs

statistics cleared 3091681 seconds ago

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

TCP-Telnet 2085080 0.6 93 69 63.3 41.2 28.1

TCP-FTP 5132767 1.6 13 78 22.4 13.1 19.9

TCP-FTPD 4740235 1.5 246 472 378.4 21.1 12.0

TCP-WWW 205706062 66.5 14 349 982.0 7.0 10.3

TCP-SMTP 9677088 3.1 29 304 92.6 15.7 18.1

TCP-X 376666 0.1 264 280 32.1 35.6 31.1

TCP-BGP 1062162 0.3 3 49 1.0 11.4 32.3

TCP-Frag 22684 0.0 34 820 0.2 16.0 33.9

TCP-other 63125227 20.4 61 367 1260.8 35.9 16.4

UDP-DNS 91935276 29.7 3 105 97.6 0.9 6.9

UDP-NTP 14258676 4.6 2 75 9.5 0.9 34.0

UDP-TFTP 2522 0.0 4 52 0.0 12.3 34.0

UDP-Frag 176486 0.0 66 1360 3.7 44.9 33.8

UDP-other 60635750 19.6 10 157 203.3 6.6 33.9

ICMP 24030091 7.7 7 80 58.7 7.5 33.9

IGMP 450344 0.1 176 384 25.7 163.1 31.2

IPINIP 52300 0.0 33957 475 574.4 662.5 17.0

GRE 23598 0.0 94749 472 723.1 1464.2 1.7

IP-other 114 0.0 90 62 0.0 5.3 33.8

Total: 483493128 156.3 28 376 4529.5 10.3 15.8

Figure 3.2: NetFlow Statistics on the Stuttgart Core Internet Router



3.2 The IETF RTFM Working Group 47

3.2 The IETF RTFM Working Group

The Internet Engineering Task Force (IETF) is a large open international commu-

nity of network designers, operators, vendors, and researchers concerned with the

evolution of internet architecture and the smooth operation of the Internet. It is

open to any interested individual. The actual technical work of the IETF is done in

its working groups, which are organized by topic into several areas (e.g., routing,

transport, security, etc.). One of those working groups is the “Realtime Traffic Flow

Measurement Charter”2 (RTFM). This working group has three main objectives:

1. Review existing work in traffic flow measurement, including that of the

RMON and internet accounting working groups and published work from

independent researchers.

2. Produce an improved Traffic Flow Model considering at least the follow-

ing:

� Efficient hardware implementation

� Effect of IPv6 on traffic measurement

� Extension of the accounting model to widen the range of measurable

quantities

� Simpler ways to specify flows of interest

� Maintain existing focus on data reduction capabilities

3. Develop the Flow Meter MIB as a “standards track” document with the

IETF.

The groups current chairs are Nevil Brownlee (University of Auckland), Greg Ruth

(GTE) and Sig Handelman (IBM). So far, the group has contributed several Internet

Drafts [37]. Three of them have meanwhile become RFCs [4, 5, 26]. Those RFCs

2The RTFM charter provides a WWW homepage with further information on the current research

state athttp://www.ietf.org/html.charters/rtfm-charter.html



48 Existing Flow–based Measurement and Analysis Applications

describe a proposal for an architecture for flow measurement (in [26]) as well as

a formal specification for a traffic meter in ASN.1 notation, the “Meter MIB” [4].

Nevil Brownlee also provides a first implementation of the architecture in a set

of programs called“NeTraMet” (Network Traffic Meter),“NeMaC” (NeTraMet

Manager/Collector) and“nifty” (a graphical network traffic flow analyzer). In [5]

he describes the experiences that were made with this set of programs.

3.2.1 The RTFM Architecture

The architecture is based on an earlier model described in RFC1272 [7]. It distin-

guishes between a trafficmeter, ameter reader and amanager. Data is analyzed

by ananalysis applicationwhich is not further specified in the RFCs3. Figure 3.3

gives an overview over the architecture.

Analysis
ApplicationMeter Reader

Manager

Meter

Figure 3.3: The RTFM Traffic Flow Measurement Architecture (RFC2063)

The following terms are defined by the RFC and describe the basic structure of the

architecture:

Manager A traffic measurement manager is an application which configures “me-

ter” entities and controls “meter reader” entities. It uses the data requirements

of analysis applications to determine the appropriate configurations for each

3The architecture was initially designed for accounting purposes. The analysis application in an

accounting scenario was the program that printed the bills for the customers.



3.2 The IETF RTFM Working Group 49

meter and the proper operation of each meter reader. It may well be conve-

nient to combine the functions of meter reader and manager within a single

network entity.

Meter The meter is the heart of a traffic flow measurement system. Meters are

placed at measurement points determined by network operations personnel.

Each meter selectively records network activity as directed by its configura-

tion settings. It can also aggregate, transform and further process the recorded

activity before the data is stored. The processed and stored results are called

the “usage data”.

Meter Reader A meter reader reliably gets usage data from meters and makes it

available to analysis applications.

Analysis Application An analysis application processes the usage data in order to

provide information and reports which are useful for network engineering and

management purposes. Examples include:

� Traffic Flow Matrices , showing the total flow rates for many of the

possible paths within a network.

� Flow Rate Frequency Distributions, indicating how flow rates vary

with time

� Usage Datashowing the total traffic volumes sent and received by par-

ticular hosts.

3.2.2 IETF Example Applications: NeTraMet, NeMaCand Nifty

The NeTraMetMeter

NeTraMet, a meter for network traffic flows, is the first implementation of the archi-

tecture. It is available as public domain4 software with source code and has been

4ftp://ftp.auckland.ac.nz/pub/iawg/NeTraMet/



50 Existing Flow–based Measurement and Analysis Applications

successfully compiled on Solaris, SunOS, Irix and Linux. Under UNIX, the meter

is using thelibpcap BSD packet capturing library. A meter implementation on the

PC (MS–DOS based) is also available. This implementation uses the CRYNWYR

packet drivers for access to the networking hardware.

The roots ofNeTraMetwere not in traffic analysis, in the beginning it was developed

for traffic accounting. Currently one Sun SPARC Workstation withNeTraMetis

used for the traffic accounting of all IP traffic in New Zealands academic networks.

The participiants in the New Zealand networks are charged fees based on the traffic

measurements made withNeTraMet. The system has been in use for some years

now and has shown to be a stable and suitable solution for this kind of measurement

problem.

The meter could simply establish flows for every possible combination of source

and destination attributes it observes (like the Cisco Switch does) but this would

need a lot of memory. Instead theNeTraMetmeter uses a set ofrules to decide

which flows are of interest. Those rules can also be set up in a way so that particular

kinds of packets are totally ignored.

This is the main conceptual advantage thatNeTraMetoffers. It allows the use of

freely parametrizable flow specificationsfor measurement, just as proposed by the

model presented in chapter 2. For this purpose, so called "rulesets" can be defined

that specify for which parameters the measurement is to be done. Those parameters

could be adresses (of different layers), ports, or anything that one can imagine to

categorize data from one flow against the others.

For the definition of traffic flow specifications,NeTraMetdistinguishes the address

attributes of a host by the following three kinds:

Adjacent On a standard ethernet this would be an ethernet MAC address. For other

media, the decoding of addresses has not yet been implemented.

Peer A peer address can be an IP address, a DECnet phase IV address, a Novell

network number, an EtherTalk address or a CLNS NSAP, these being the five

protocols currently understood byNeTraMet.



3.2 The IETF RTFM Working Group 51

Transport A transport address contains specifications for details within the peer

protocol. For IP these are the protocol type and source and destination port

numbers, and similar kinds of detail are defined for the other protocols.

This abstract definition of the flow endpoint granularities has the advantage that

the RTFM architecture is easily extendable to new protocols. For example, the

NeTraMetmeter currently does not support the decoding of IPv6 or encapsulated

IP. Nevertheless, implementing those protocols is possible within the architecture,

so the only thing that has to be extended in order to support those protocols will be

the applications.

Figure 3.4 shows how the abstract layers would correspond to transport, internet-

work and network technology layer when the meter is used in a TCP/IP environ-

ment.

Traffic Meter
NeTraMet

Transport

Application

Station B

IP

Network
Technology

Station A

Transport

Peer

Addresses

Addresses

Adjacent

Addresses

TCP, UDP, ...

Internetwork

(Ethernet, ...)

Figure 3.4: Different LayersNeTraMetcan use for Flow Endpoints

Within the meter aflow is implemented as a data structure containing the attributes

of its source and destination, its packet and byte counters, the times it was first and

last observed, and other information used for control purposes.

This data structure is called a “flowDataEntry” node in the MIB. These entries are

stored in a table under the OID



52 Existing Flow–based Measurement and Analysis Applications

.mib-2.flowMIB.flowData.flowDataTable.

Table 3.1 shows the fields that are defined for each flow in those flow records. One

of those records is allocated for each flow the meter captures. The records are stored

in the “flowDataTable”. The location of this table and the records in theflowMIB

can be seen in figure B.1 in the Appendix.

In order to reduce the transfer time from the meter to the reader, the flow table itself

can be transferred from theNeTraMetmeter in a BER encoded packaged form with

SNMPv2 GETBULK requests. Additionally, it is possible to read the entries in an

unencoded form using standard SNMP GET requests.

Figure 3.5 shows how the times are defined for traffic flows captured by aNeTraMet

meter. All times are measured relative to the uptime of the meter. Therefore, a meter

reader will have to read the current uptime of the meter as well as all relevant time

information for each of the flows that is to be analyzed. The two graphs depict the

state of the same flow record, the second one showing the state a short time after

the first. As it can be seen from the graph, additional packets have been received

between the two queries.

For the “flow timeout”NeTraMetuses a default value of 600 seconds5. This value

can be modified by meter managers by doing a SET operation on

flowMIB.flowControl.flowInactivityTimeout.

A flow that is not yet expired (i.e. for which the flow timeout has not yet been

exceeded without the reception of a packet) has got theflowDataStatus “current”.

A flow for which no more data has been seen is “inactive”.

When reading the flow data from the meter, one has to take care about the time skew

that can occur during the query. For example if the meter reader would first read

the meter uptime and then transfer the flow records for all flows it is interested in,

it can happen that “LastActiveTime” values are seen that are in the future. When

doing calculations with those times, this has to be kept in mind.
5This is theflowInactivityTimeout parameter in the MIB [4]



3.2 The IETF RTFM Working Group 53

Symbolic Name Type Syntax

1 flowDataIndex Integer32 INTEGER (-2147483648..2147483647)

2 flowDataTimeMark TimeFilter INTEGER (0..4294967295)

3 flowDataStatus INTEGER

4 flowDataSourceInterface Integer32 INTEGER (-2147483648..2147483647)

5 flowDataSourceAdjacentType AdjacentType INTEGER

6 flowDataSourceAdjacentAddress AdjacentAddress OCTET STRING [3..20]

7 flowDataSourceAdjacentMask AdjacentAddress OCTET STRING [3..20]

8 flowDataSourcePeerType PeerType INTEGER

9 flowDataSourcePeerAddress PeerAddress OCTET STRING [3..20]

10 flowDataSourcePeerMask PeerAddress OCTET STRING [3..20]

11 flowDataSourceTransType TransportType INTEGER (1..255)

12 flowDataSourceTransAddress TransportAddress OCTET STRING (2)

13 flowDataSourceTransMask TransportAddress OCTET STRING (2)

14 flowDataDestInterface Integer32 INTEGER (-2147483648..2147483647)

15 flowDataDestAdjacentType AdjacentType INTEGER

16 flowDataDestAdjacentAddress AdjacentAddress OCTET STRING [3..20]

17 flowDataDestAdjacentMask AdjacentAddress OCTET STRING [3..20]

18 flowDataDestPeerType PeerType INTEGER

19 flowDataDestPeerAddress PeerAddress OCTET STRING [3..20]

20 flowDataDestPeerMask PeerAddress OCTET STRING [3..20]

21 flowDataDestTransType TransportType INTEGER (1..255)

22 flowDataDestTransAddress TransportAddress OCTET STRING (2)

23 flowDataDestTransMask TransportAddress OCTET STRING (2)

24 flowDataPDUScale INTEGER

25 flowDataOctetScale INTEGER

26 flowDataRuleSet INTEGER

27 flowDataToOctets Counter64 INTEGER (0..18446744073709551615)

28 flowDataToPDUs Counter64 INTEGER (0..18446744073709551615)

29 flowDataFromOctets Counter64 INTEGER (0..18446744073709551615)

30 flowDataFromPDUs Counter64 INTEGER (0..18446744073709551615)

31 flowDataFirstTime TimeStamp INTEGER (0..4294967295)

32 flowDataLastActiveTime TimeStamp INTEGER (0..4294967295)

33 flowDataSourceSubscriberID OCTET STRING

34 flowDataDestSubscriberID OCTET STRING

35 flowDataSessionID OCTET STRING

36 flowDataSourceClass INTEGER

37 flowDataDestClass INTEGER

38 flowDataClass INTEGER

39 flowDataSourceKind INTEGER

40 flowDataDestKind INTEGER

41 flowDataKind INTEGER

Table 3.1: Data Structure of Entries in the Flow Table of theNeTraMetMeter



54 Existing Flow–based Measurement and Analysis Applications

FirstTime LastActiveTime

LastActiveTimeFirstTime

Uptime

t

t

Uptime

Figure 3.5: Flow Time Definitions withNeTraMet

The Manager/Collector “NeMaC”

NeMaCis a combined manager and collector for theNeTraMetmeter. It is a sim-

ple Unix program, controlled via command line arguments. Parameters include the

collection interval, rulefile name, configfile (determining which meters are to be

controlled), SNMP community names and a number of optional operational param-

eters (like the flow timeout) for theNeTraMetmeter which is to be managed.

While it is running,NeMaCgenerates a log file recording any unusual events ob-

served for the meters being controlled as well as a “flows” file for each meter it

controls.

The Traffic Flow Analyzer “nifty”

"nifty" is a Motif-based graphical interface that offers rapid insights into the current

traffic on a network.

It displays a log–log plot which is updated after each sample period, i.e. each time

the NeTraMet meter is read. Flow duration is plotted on the abscissa (=X axis). The



3.2 The IETF RTFM Working Group 55

##NeTraMet v4.1: -c120 -r rules.all ksoc3mon oc3a 50000 flows

starting at 12:56:58 Wed 2 Jul 1997

#Format: flowruleset flowindex firsttime sourcepeertype sourcetranstype

sourcepeeraddress sourcetransaddress to destpeeraddress desttransaddress

topdus tooctets frompdus fromoctets

#Time: 12:56:58 Wed 2 Jul 1997 ksoc3mon Flows from 1 to 6625625

#Ruleset: 5 5 rules.all NeMaC

#Stats: aps=8 apb=0 mps=24 mpb=0 lsp=0 avi=0.0 mni=0.0 fiu=6 frc=16

gci=10 rpp=0.6 tpp=0.9 cpt=1.0 tts=49152 tsu=4

5 300 6625137 1 0

141.46.14.72 1301 to 129.143.67.68 80

1703936 203030528 1048576 457572352

5 301 6625140 1 0

141.46.14.72 1304 to 129.143.67.68 80

1441792 158859264 917504 343146496

5 304 6625182 1 0

129.143.67.65 37939 to 194.195.240.82 80

262144 49020928 262144 10485760

5 305 6625184 1 0

129.143.67.65 37942 to 194.195.240.82 80

393216 54788096 393216 398983168

. . . .

#Time: 13:02:00 Wed 2 Jul 1997 ksoc3mon Flows from 6643806 to 6655878

#Stats: aps=26 apb=0 mps=134 mpb=0 lsp=0 avi=0.0 mni=0.0 fiu=246 frc=0

gci=10 rpp=0.8 tpp=1.2 cpt=1.1 tts=57344 tsu=213

5 306 6625215 1 0

204.70.74.61 4865 to 193.196.152.226 2299

1835008 58720256 0 0

5 313 6625303 1 0

129.69.47.58 4865 to 193.196.152.10 21997

3932160 125829120 0 0

5 431 6639890 1 0

128.182.73.68 3 to 193.196.152.226 3

327680 18350080 0 0

5 434 6643418 1 0

193.196.155.70 1600 to 128.182.73.68 4787

262144 16777216 0 0

. . . .

Figure 3.6: Sample flow data file as generated by NeMaC



56 Existing Flow–based Measurement and Analysis Applications

durationd is calculated as

d = l- f

wherel is theLastActiveTime andf is theFirstTime value from the record the

flow meter keeps, as depicted in Figure 3.5. Each traffic flow is depicted as a symbol

in the chart. The format can be specified within the rule file which nifty uploads to

the meter upon startup. To display the different flow kinds, all ASCII characters as

well as some symbols can be used. This is also configurable via the rule file.

Nifty plots

Via menu options it is possible to choose different display modes for the flow data.

On the ordinate, nifty can display either packets or bytes. Additionally, the metric

(rate, count or percent) can be choosen.

These choices give the user the following possibilities for analysing the network:

1. Thetotal number of packets for each flow over the flow duration (i.e. the

time between the first and the last packet seen for the particular flow) can be

depicted, as shown in Figure 3.7.

2. In the same way, the “packet rate” r (i.e. the number of packets per second)

can be depicted over the flow duration. The packet rate is computed as

r = n=�

wheren is the number of packets observed in the last sample and� is the

length of the last sample.This plot is most useful for observing flows of short

bursts. An example is shown in Figure 3.8.

3. Figure 3.9 shows the flowpacket rate as a percentage of the total observed

packet rate for the last sample.



3.2 The IETF RTFM Working Group 57

Figure 3.7: Nifty displaying the packet count vs. the flow duration

Figure 3.8: Nifty displaying the packet rate vs. the flow duration



58 Existing Flow–based Measurement and Analysis Applications

Figure 3.9: Nifty displaying the packet percentage vs. the flow duration

Figure 3.10: Nifty displaying the byte count vs. the flow duration



3.2 The IETF RTFM Working Group 59

4. The total number of bytes can be displayed over the flow duration, as in

Figure 3.10.This plot is most useful for observing long–term high–volume

flows.

5. Figure 3.11 shows how the number ofbytes per second, estimated from the

counts and times observed for the last sample, can be displayed over the flow

duration.

6. Theflow byte count can be displayed as apercentage of total observed

bytes for the last sample. Figure 3.12 shows an example for this.

These methods to display the traffic information have shown to be very valuable

for getting rapid insights into the current state of the network. Once one gets used

to them, they allow the user an immediate perception of the current traffic. Traffic

sources producing excess packets can be easily located in the chart. At the same

time, the different characters representing protocols allow a instantaneous overview

of the kinds of applications that are responsible for the network load.



60 Existing Flow–based Measurement and Analysis Applications

Figure 3.11: Nifty displaying the byte rate vs. the flow duration

Figure 3.12: Nifty displaying the byte percentage vs. the flow duration



3.3 The NLANR OC3MON 61

3.3 The NLANR OC3MON

In order to measure traffic at higher speeds like ATM OC3 (150 Mbits/s), data cap-

turing can no longer be effectively done on standard UNIX machines using mech-

anisms as thelibpcap library. Therefore, the National Laboratory for Applied

Network Research (NLANR) and MCI Telecommunications Corp. have devel-

oped OC3MON as a low cost high–speed traffic flow measurement system [13].

OC3MON is part of the “CORAL” project, which is now aiming at the develop-

ment of a similar monitor for even higher (OC12) line speeds.

3.3.1 OC3MON System Overview

The system, whose hardware is depicted in Figure 3.13 consists of an IBM personal

computer clone with 128 MB of main memory, a 166 MHZ Intel Pentium processor,

an Ethernet interface and two Fore PCA–200 PCI ATM interface cards running on

a 33 MHz 32–bit wide PCI bus. The Intel i960 processor on the Fore cards allows

to optimize OC3MON operation with custom firmware. Usually, Fore does not

disclose the source code for this firmware, however NLANR made arrangements

with Fore to obtain it and freely distribute the custom firmware executables along

with the source code developed for the OC3MON system processor.

The OC3MON ATM NICs are attached to an OC3 fiber pair carrying IP traffic,

connecting the receive port of each ATM card to the monitor port of an optical

splitter, which carries 5% of the light from each fiber to the receive port of one NIC.

Attached to an OC3 trunk terminated on a switching device (e.g., ATM switch or

router), one of the OC3MON NICs sees all traffic received by the switching device

and the other NIC sees all traffic transmitted by the switching device.

The system is currently used on the vBNS in between the wide area ATM backbone

and the primary nodes at the supercomputer centers6. Other sites using OC3MON

6vBNS/NLANR provide the measurement data as well as information on the state of the CORAL

project to the public athttp://www.nlanr.net/NA/Oc3mon/



62 Existing Flow–based Measurement and Analysis Applications

Fore PCA200-PCI

Ethernet NIC

OC3MON PC
Pentium 166 MHz, 128 MB Ram, 5 GB HD

Fore PCA200-PCI

O
p

ti
ca

l S
p

lit
te

rs

O
C

-3
 L

in
e

Figure 3.13: The OC3MON Hardware

include the National Center for Supercomputing Applications (NCSA) at the Uni-

versity of Illinois, Urbana–Champaign, Nokia (Finland), NTT (Japan), the Univer-

sity of Auckland (New Zealand) and MCI (USA).

The software for OC3MON is free. All source code files are available by FTP7.

However the source of OC3MON is relatively difficult to reuse or extend, since it

strongly depends on the Fore adapters that are used, for which the programmers

manuals are not available without special agreements with Fore.

7The source code is available atftp://nlanr.net/Software/Oc3mon



3.3 The NLANR OC3MON 63

3.3.2 The OC3MON Software

The DOS–based software running on the PC consists of device drivers and a TCP/IP

stack combined into a single executable; higher level software performs the real-

time flow analysis. DOS was chosen as operating system, because Unix has a higher

interrupt latency. Since the Texas Instruments cards in the original OC3MON de-

sign required polling at 1/128 the cell rate in order to obtain accurate timestamp

granularity at full OC3 rate (the card itself did not timestamp the cell), a very fast

response to interrupts was necessary. Even if the two cards would have been put into

two very fast Pentium PCs, timing would still have been critical on Unix Systems

which cannot guarantee realtime response.

The latest OC3MON design uses Fore cards that can attach timestamps to the cells

on their own; the host no longer needs to poll the card at all. Interrupts only occur at

most every 1/40 second (e.g., if both links received 40 byte packets simultaneously),

so low latency is no longer a constraint. Therefore now there is a first effort to port

the OC3MON software to a UNIX environment8.

Background on ATM

Several possibilities exist to route IP traffic over ATM networks [33]. The OC3MON

software was designed to work only with IP traffic encoded using LLC/SNAP en-

capsulation (cf. [3], p. 208) conforming to RFC1483 [10] (i.e. on top of ATM

AAL5 9).

8Jon Dugan,jdugan@ncsa.uiuc.edu is currently working on an OC3MON port to FreeBSD.

He maintains a web page athttp://rivendell.ncsa.uiuc.edu/oc3mon
9Note that Cisco routers and Fore switches also support AAL3/4, but this is not used very often

because it consumes an additional 4 bytes from each cell (above the 5 already used for the ATM

header) to support submultiplexed channels within a given VP/VC. Therefore it was not implemented

in OC3MON

Since the LLC/SNAP 8–byte per–frame header that the routers insert already includes a 2–byte

ethertype field that allows, if needed, multiplexing of different protocols (IP, IBM SNA, Novell IPX,

etc) on the same VC, including AAL3/4 support in the design would not have been beneficial. Note



64 Existing Flow–based Measurement and Analysis Applications

The software directs each ATM card to perform AAL5 reassembly on a specified

range of virtual circuit and virtual path identifiers (VCI/VPI).

GFC: Generic Flow Control
VPI: Virtual Path Identifier
VCI:

8 4

VCI

7 6 5 3 2 1

GFC

VPI

VCI

VCI

VPI

HEC

Virtual Channel Identifier

PTI:

HEC:

Payload Type Identifier
Cell Loss Priority
Header Error Control

CLP:

CLP

1

2

4

3

5

PTI

Figure 3.14: ATM Header Structure at the UNI

AAL5 Frame Reassembly using VPI, VCI and the PTI fields of the ATM Header

AAL5 makes use of the “end of SAR–SDU” indication, which is carried as a value

1 in the lowest bit of the ATM layer user to ATM layer user indication bit field of the

PTI field in the ATM header to indicate whether a cell is the last in a frame10. Figure

3.14 shows where the PTI field is located inside the ATM UNI header structure. The

payload data is encapsulated in the 48 bytes that follow this header.

AAL5 also assumes that cells for a given frame will not be interspersed with cells

for another frame within the same VP/VC pair. Combined with a single bit of state

per VP/VC pair maintained by the receiver, which indicates that the cell is in the

also that the addition of any bytes to a simple (no data attached) TCP ACK causes the 8-byte ATM

AAL5 trailer to require another cell, doubling the bandwidth used by such packets.
10cf. [8], p. 138



3.3 The NLANR OC3MON 65

middle of a frame for that VP/VC pair, there is enough information to reassemble

the frame11.

Since OC3MON has no need for data beyond the first cell, and since it already

maintains per–flow state on the host, the per–VC state on the card is limitted to the

bare minimum: one bit.

This limit allows to use 20 bits for VPI and VCI information, yielding a 128KB

table size. Although the Fore cards have 256KB of memory, some of it is used for

the i960 code (about 32K), the OS, reassembly engine data structures, and the stack.

Since the VP/VC lookup needs an exact power of two, the largest possible number

of VP/VC pairs is220. (Single-bit state for220 VP/VC combos =217 bytes =131072

bytes =128KB).

Examining twenty bits of VCI/VPI information allows OC3MON to monitor over

one million VCs simultaneously. The host controls exactly how many bits of the

VCI this 20–bit index will include; the rest derive from the VPI. The host also

specifies at startup what to expect for the remaining bits of the VPI/VCI, i.e., those

not used for indexing into the card’s state table. The card can then complain about,

or at least drop, non-conforming cells.

Since OC3MON is designed to be able to see traffic on (almost) any VPI/VCI with-

out prior knowledge of which circuits are active and because the fast SRAM (static

random access memory) used on such ATM cards for state tables is expensive and

not amenable to modification by the consumer, this design turned out to be ex-

tremely advantageous.

Software–Description

The AAL reassembly logic is customized to captureonly the first cell of each

frame as shown in Figure 3.15. The 48 bytes of payload from these cells typically

11Note that when multiple cells of the same packet are copied to the host, the card will not place

them near each other so the host must do further reassembly using the ATM headers.



66 Existing Flow–based Measurement and Analysis Applications

contain the LLC/SNAP (8 bytes), IP and TCP (typically 20 bytes each) headers12.

Copying the 5 byte ATM header also allows the flexibility of doing ATM based

analysis in the future. The SAR engine discards the rest of each AAL5 protocol

data unit (PDU, equivalent to a frame or IP packet), limiting the amount of data

transferred from the NICs over the PCI bus to the host. Although as yet unim-

plemented, one could increase the amount collected to accommodate IP options or

larger packet headers as specified for IPng. Currently, however, the cards only pass

the first cell of each packet, so when IP layer options push part of the TCP header

into the second cell, these latter portions will not be seen by the host.

VC 45

VP 10VP 6

VC 45

VP 6

VC 45���������� ������

VP 6

VC 45
Last Cell

VP 6

VC 45
Last Cell

VP 6

VC 45

Captured Captured

Figure 3.15: Which ATM Cells are Captured

Each ATM card has two 1MB buffers in host memory to hold IP header data. The

cards are bus masters, able to DMA (direct memory access) header data from each

AAL5 PDU into the host memory buffers with its own PCI bus transfer. This ca-

pability eliminates the need for host CPU intervention except when a buffer fills, at

which point the card generates an interrupt to the host, signaling it to process that

buffer up to memory while the card fills the other buffer with more header data.

This design allows the host to have a long interrupt latency without risking loss of

monitored data. The cards add timestamps to the header data as they prepare to

transfer it to host memory. Clock granularity is 40 nanoseconds, about1=70 of the

OC3 cell transmission time.
12Note that encapsulated IP traffic cannot be analyzed since the encapsulated headers do not fit

into the first cell



3.3 The NLANR OC3MON 67

Usage

For data analysis, the OC3MON can be used in two different modes:

1. Tworaw capture modes13, in which all packet headers are captured to mem-

ory and then dumped to disk.

(a) The first of these modes captures the complete first ATM cell in each

packet, which includes TCP/IP headers.

(b) The second one captures only the ATM headers, but not only for the first

cell of each packet but for all cells.

Raw capturing is useful for getting a detailed view of traffic over a relatively

brief interval. This allows an extensive further analysis of the captured data.

However, because currently the DOS–supplied disk I/O routines — which

are blocking — are used, it is not possible to write to disk simultaneously

with data capturing. In fact, the I/O is not even fast enough to sustain disk

transfer of a packet trace without the flow analysis process running. Therefore

one can only collect a trace as big as the size of host memory, which in our

case would be 114MB (119.5 million bytes), and then must stop OC3MON

header collection to let OC3MON transfer the memory buffer to disk. In the

future, separate I/O routines that directly use the hardware will eventually be

developped, bypassing the slower DOS routines and allowing to keep up with

OC3 line rate.

2. An IP flow capture mode in which the OC3MON maintains flow statistics

that do not require the storage of each header.

Because the amount of data captured in a packet level trace and the time

needed for our disk I/O inhibits continuous operational header capture, this

mode of operation is the default mode. Once again this shows the advantages

13Apparently, a third mode has been added in July 1997 to capture all of all cells. The author had

no possibility to test this yet.



68 Existing Flow–based Measurement and Analysis Applications

that the concept of flows offers for traffic analysis. Concurrently with the

interrupt driven header capture, software runs on the host CPU to analyze the

packet headers and to establish flows. The flows are analyzed and stored at

regular intervals for remote querying. For querying, a Perl script on a web

server is executed in regular intervals and the data is captured to a file. The

queries themselves are done with simpletelnet type connections to port 22

of the OC3MON PC. Using port 22 has the advantage that this port often is

not blocked by firewalls.

The way how queries in the flow capture mode are implemented is the main dis-

advantage of the OC3MON software. Usingtelnet on the one hand is simple to

implement, on the other hand the data is transferred in a non–standardized ASCII

format. Every change to the OC3MON software requires a change in the applica-

tions that use OC3MON as well. This makes it difficult for application developers

to integrate OC3MON in an own environment.

Additionally by usingtelnet, security is not present in the OC3MON querying

architecture at all. Everyone with IP access to the machine can query it with a sim-

ple telnet command. What is even worse, those queries will reset the counters

on OC3MON and therewith the automated measurements will display wrong data

afterwards. These security problems can currently only be solved by putting the

OC3MON ethernet interface inside a secure network. For those reasons, the query-

ing protocol is a severe limitation for practical use of the software. However, we

will later see (in section 3.4) that there is already a promising solution for this.

Is OC3MON really fast enough for 150 Mbits/s?

OC3MON was tested by NLANR on an OC3c link fully occupied with single cell

packets (as would occur in the admittedly unlikely event of continuous TCP ACKs

with no data and LLC/SNAP disabled on the routers), which yields 353207.5 pack-

ets per second (or in the single-cell packet case, the same number of cells) across



3.3 The NLANR OC3MON 69

OC3MON
System

Querying

telnet OC3MON:22

ASCII Text

Figure 3.16: How Data is retrieved from OC3MON

each half-duplex link. Each header, including timestamp, ATM, LLC/SNAP, IP and

TCP headers consumes 60 bytes, so the internal bus bandwidth required would be

353207:5 � 2 � 60 � 8 = 339 Mbit/s:

The 32-bit, 33 MHz bus in the PC is slated at 1.056 gigabits, so bus bandwidth will

not be a bottleneck until OC12 is to be supported.

Generic internet environments exhibit average packet sizes closer to 250 bytes (about

5 cells), and rarely full utilization in both directions of a link. If we estimate 66%

utilization in one direction and full utilization in the other, we get a more realistic:

353207:5 � 1:6666=5 = 117731

headers per second, or56:5 Mbits per second across the internal bus. This estima-

tion shows that OC3MON can be used to monitor a full–duplex 150 Mbit/s ATM

connection without suffering any capacity problems.

3.3.3 Flow Definition the OC3MON uses

The OC3MON works with a flow model as it was described by Claffy, Braun and

Polyzos in [14]. As proposed in the paper, the OC3MONs flow timeout value de-

faults to 64 seconds. This value can however be changed using a command line

parameter upon program startup. Afterwards, the value cannot be changed without

restarting the whole program.



70 Existing Flow–based Measurement and Analysis Applications

3.3.4 Flow Specification Criteria with the OC3MON

The granularity for flow endpoints has to be chosen upon start of the OC3MON

software on the PC. It cannot be changed at runtime. The followingflow criteriaare

possible:

“sh�: Source Host Only

“dh�: Destination Host Only

“hp�: Host Pair

“sn�: Source Network Only

“dn�: Destination Network Only

“np�: Net Pair

“pq�: Address/Port quadruples

Additionally, an analysis that uses autonomous system (AS) numbers instead of IP

addresses is possible with the latest versions of OC3MON. This allows network

operators to gain interesting insights in who (which countries etc.) is actually using

their infrastructure.



3.4 OC3MON with NeTraMet Statistics Module 71

3.4 OC3MON with NeTraMet Statistics Module

Until december 1996 OC3MON has been a stand–alone development. Only re-

cently, Nevil Brownlee has written aNeTraMetstatistics module14 for OC3MON

which is now part of the OC3MON distribution.

The “OC3MON–NeTraMet” has interesting advantages compared to the “tradi-

tional” OC3MON software:

� The interface is standardized. This makes it easier to develop own applica-

tions for OC3MON.

� Using SNMP also allows to integrate OC3MON into existing network man-

agement environments.

� By using SNMP, now at least a simple security mechanism is implemented.

� The sophisticated flow–measurement tools (nifty/NeMaC) that have been de-

veloped for use withNeTraMetare now usable on OC3 lines as well.

� Existing accounting solutions that have been implemented for ethernet can

now be used on ATM OC3 without any modifications.

� The NeTraMetarchitecture with its “meter manager” entities gives the me-

ter reader much more control over granularity, since it allows the upload of

user–defined rulesets to the meter. On the traditional OC3MON it was only

possible to set the granularity with a command line switch, and not too many

possibilities were implemented.

A disadvantage of theNeTraMetmode for OC3 certainly is that it is harder to

write a web interface using SNMP than to write one using thetelnet command to

query the monitor. Nevertheless it is surely worth the additional effort, since those

applications written for theNeTraMetenvironment will be of use for a much larger

14Nevil Brownlee describes statistics modules athttp://www.nlanr.net/NA/Oc3mon/oc3-api.html



72 Existing Flow–based Measurement and Analysis Applications

community. Additionally,NeTraMetand its structure have matured for a long time

which assures that the mechanisms and protocols are working reliably.



3.5 Feature Overview 73

3.5 Feature Overview

The following table gives an overview over the features beeing offered by the so-

lutions presented in the last sections. Since OC3MON withNeTraMetStatistics

Module basically is an OC3MON withNeTraMetas interface, it does of course of-

fer more or less the same features as the standardNeTraMetdoes. However there

are some restrictions due to the fact that the RFC1483 ATM OC3 link is not usable

for the same kinds of encapsulations as a standard ethernet would be. Therefore,

this solution is presented in a separate column of Table 3.2.



74 Existing Flow–based Measurement and Analysis Applications

NetFlow

DataExport
OC3MON NeTraMet

OC3MON &

NeTraMet

Statistics

Module

Organization / Manufacturer Cisco NLANR/MCI IETF NLANR, IETF

Possible Flow Specifications

Host Pair + Port Pair y y y y

Host Pair only n y y y

Source Host only n y y y

Destination Host only n y y y

Network Pair n y y y

Source Network Only n y y y

Destination Network Only n y y y

Autonomous Systems n y n n

Arbitrary Groups n n y y

Flow Timeout

Default Value not specified 600s 64s 64s

Configurable n y y y

Network Technologies

Ethernet n n y n

ATM–OC3 RFC1483 n y n y

FDDI n n y n

Known Protocols

IPv4 y y y y

IPv6 n n n n

Encapsulated IP n n n n

TCP y y y y

Novell IPX n n y -

EtherTalk n n y -

DECnet n n y -

ISO CLNS n n y -

Security Mechanism should be put be-

hind a firewall

UDP broadcast

only to specific

address

SNMPv2 authen-

tication

SNMPv2 authen-

tication

Querying Protocol Cisco Proprietary ASCII / telnet SNMP SNMP

Table 3.2: Overview of the presented Flow–based Applications



Chapter 4

Writing Web–based Management

Programs

In this chapter, the necessary techniques for writing web–based network manage-

ment programs are presented. First, a brief introduction into the “Simple Network

Management Protocol” (SNMP) is given. Then different methodologies that can be

used for web–based programming (CGI, Java) are compared. Since for our needs

Java is the best solution, Java is further introduced. The focus in this introduction is

the AdventNet SNMP class library that can be used to write SNMP applications in

Java.

4.1 The Simple Network Management Protcol (SNMP)

The “Simple Network Management Protocol” (SNMP) [36, 38] is a protocol for

internet network management services. It is formally specified in the IETF stan-

dards STD15 [23], STD16 [15], STD17 [16] and STD50 [17] as well as a series of

RFC documents. The protocol is not limited to use on TCP/IP networks. It can for

example also be used over OSI [35] or on IPX [2].



76 Writing Web–based Management Programs

4.1.1 Architecture

SNMP Manager
Program

SNMP Agent
Program

SNMP Agent
Program

Managed
Element

Managed
Element

Managed
Element

Managed
Element

SNMP
Response

Request
SNMP

Trap
SNMP

SNMP Manager
Program

Figure 4.1: SNMP Agents and Managers

Figure 4.1 depicts the basic architecture. Management is based on a client–server

model. The "manager" is a client process which communicates with managed

nodes. These nodes provide information via server processes called "agents". RFC

1470 [32] contains an overview over existing SNMP manager products for different

platforms.

Agents can be contacted by multiple managers. The manager contains the manage-

ment functions and presents management information to the user. It perceives the

agent as a virtual data store that is populated with instances of “managed objects”

(MOs), as shown in Figure 4.2. A managed object is a parameter or an attribute that

the agent monitors. Instances of the managed objects are simply the current values

of the parameters or attributes.

A manager program sends requests to one or more agents. The agent returns the

requested information in response. Each request causes the agent to generate exactly

one corresponding response.



4.1 The Simple Network Management Protcol (SNMP) 77

Managed
Object

Managed
Object

Managed
Object

Managed
Object

Managed
Object

Managed
Element

Data Cache
Virtual

Agent
SNMP

Manager
SNMP

Figure 4.2: SNMP Agent Functionality

4.1.2 Alarm Messages (Traps)

The SNMP agents can also initiate communication with the managers by sending

so called “Traps” [34]. This can for example be used to notify the network operator

upon special events like failures of links etc.

A connectionless transport protocol, UDP, is employed to convey SNMP messages

between the agents and managers. Even though with this protocol delivery is not

guaranteed, the reality is that a vast majority of the messages are successfully de-

livered. In addition most manager programs keep track of requests that they have

sent. If a response is not received within a time–out interval, the manager program

retransmits the request. However, using an unreliable protocol to carry SNMP has

one disadvantage when transmitting the unsolicited trap messages from an agent to

a manager. The agent has no way of determining if a trap was actually received by

the intended manager (the manager may not even be running!).



78 Writing Web–based Management Programs

4.1.3 SNMP Proxy Agents for the Management of Non–SNMP

Devices

In Figure 4.1, the SNMP agent is assumed to be part of the managed hardware. In

the real world there are resources that either are not managed by a computer process

or are managed using a non–SNMP protocol. Still many device manufacturers ei-

ther do not provide support for SNMP or they may provide limited SNMP support.

The latter includes switch vendors that have SNMP agents on some of their inter-

face cards, but do not have agents that monitor the entire switch, including power

supplies, the CPU, and the configuration. In this case if you want to use SNMP

to manage the switch, you might need a so called “proxy agent” to monitor and

control the switch. Such proxy agents allow access to remote information about

passive components (cables, transceivers, repeaters) and resources of other protocol

environments.

Proxy Agent
SNMP

Manager
SNMP

Managed
Element

Managed
Element

Proprietary
Protocol

Element Management
System

SNMP

Figure 4.3: SNMP Proxy Agent



4.1 The Simple Network Management Protcol (SNMP) 79

Figure 4.3 depicts an example for such a scenario. The protocol between the SNMP

proxy and the elements management system depends on the specifications of the

latter, and usually will be a proprietary one.



80 Writing Web–based Management Programs

4.2 Programming for the WWW

To write programs that use a WWW browser as their user interface, two main pos-

sibilities exist:

CGI (“Common Gateway Interface”) programs can be written in any programming

language that is available on the web–server. The CGI program can be called

upon specific events by the web–server. Often, such programs are simple shell

or Perl scripts. The CGI provides a common interface between the server

and the program by passing arguments inside environment variables. The

program in return has to create HTML code as output which will be sent to

the web browser of the user who originated the event that caused the CGI

program to start.

Since standard HTML code is generated, programs that use the CGI technique

can be executed using all kinds of web–browsers. It suffices that the browser

is capable of displaying the generated HTML code.

Java programs are, in contrary to CGI programs, executed inside the Java Virtual

Machine (VM) [24] of the users web browser. To make this possible, Java

source code is compiled into so called “class files” in a special Java byte code

format. After beeing transferred to the web browser on the client machine, the

Java byte code is verified for security problems and then executed within the

Java Virtual Machine. The same byte code format is used on all implementa-

tions of the Java VM, therefore an application written in Java is executable on

all kinds of platforms for which a Java VM is available. The VM is included

in all recent versions of the Netscape Web browser, therefore Java programs

can be executed by virtually everybody who uses the World–Wide–Web.

From the users view, Java programs when compared to CGI have the advantage

that they can continue running when the web page is already loaded in the browser.

With CGI programs this is not possible. The only way to change/modify data that is

displayed by a program using CGI is to restart the program. This could be triggered



4.2 Programming for the WWW 81

by another user event, or as it is the case in programs likemrtg, by a periodic refresh

of the whole page1(equivalent to the user pressing the “Reload” button of the web

browser).

Server
WWW

Server
WWW

Server Machine

Server Machine Client Machine

Client Machine

Internet

Java:

Web
Browser

Internet

Common Gateway Interface (CGI):

Web
BrowserCGI

Program

Java
Program

JavaVM

Path over which the Program is Loaded Program I/O

Figure 4.4: Conceptual Difference between Java and CGI Programs

1This can be acomplished by using the REFRESH tag in newer versions of Netscape. Note that

not all web browsers are guaranteed to support this feature.



82 Writing Web–based Management Programs

4.3 Writing Network–Management Applications for

the World Wide Web

To write applications that use the SNMP protocol for network management, dif-

ferent possibilities exist as well. Themrtg product we presented in 1.2.1 uses the

Perl5 library for SNMPby Simon Leinen2 which itself is also written entirely in

Perl. The Perl language [21] is a scripting language which is interpreted. It is very

powerful to write short administrative scripts for management applications. How-

ever, the Perl library offers only a limited subset of SNMP commands. The only

SNMP operations currently supported are “GET” and “GET-NEXT”. This means that

one can neither set variables in an agent, nor receive or generate SNMP traps using

these routines. Nevertheless, for solutions likemrtg, Perl5 with this library is an

ideal platform, since the code is quite easy to maintain and a CGI program is per-

fectly capable of handling the task to generate a static graph of SNMP counters. For

this particular application it is also of advantage that C programs can be easily used

on the server side. Newer versions ofmrtg use a C program to maintain the data

files in order to speed up the process. Implementing this kind of application with

Java would be quite inefficient.

With Java, the complete mechanisms of SNMPv2 are available using special class

libraries. SNMP support is not included in the Java Development Toolkit (JDK) Ver-

sion 1.0. Sun is promoting the Java Management API (JMAPI)3. However, when

this work was started, JMAPI had not yet been released and today it is still in a

beta test state. An alternative to JMAPI is provided by AdventNet: The “Advent

SNMPv2c Package”4 is a class library providing the complete set of functions nec-

essary to write an SNMP application in Java. Advent uses this class library in their

“Advent Web NMS” product, which can be used to interactively build SNMP ap-

2The Perl5 SNMP library is available athttp://www.switch.ch/misc/leinen/snmp/perl/
3Sun provides information on the current state of the JMAPI project at

http://www.javasoft.com/products/JavaManagement/NTR.html
4Documentation for the Advent products and the class libraries are available on the WWW at

http://www.adventnet.com



4.3 Writing Network–Management Applications for the World Wide Web 83

plications by assembling pre–built components they provide. The library is widely

in use and has shown to be suitable for a broad variety of applications.

For our application, the real–time analysis of traffic flows on a network, CGI pro-

grams with static output obviously are not suitable. Therefore we decided to write

a Java application based on the AdventNet libraries.

In the following sections, we will describe the Java architecture and how SNMP

applications are implemented in this architecture in detail.



84 Writing Web–based Management Programs

4.4 Java

4.4.1 Introduction to Java

The Java language is an object–oriented programming language developed by Sun

Microsystems. Modeled after C++, Java was designed to be simple, small and

portable across platforms and operating systems, not only at the (compiled) bi-

nary level but also at the source level. Note that Java language has nothing to do

with “JavaScript”, a script language developed by Netscape that can be included in

HTML pages and which can be executed by web browsers.

The Java language has been formally specified in the “Java Language Specification”

[12] in 1996. Only recently the new version 1.1 of the Java Development Toolkit

(JDK) has been released with which some minor changes have been made tho the

language specification. This new version is documented in [18].

OPERATING SYSTEM

JAVA APPLICATIONS / APPLETS

JAVA VIRTUAL MACHINE

HARDWARE

MacOS Windows Solaris Linux HP/UX

Figure 4.5: Java Execution Environment

Java sourcecode is translated into Java bytecode using the Java compilerjavac.

As mentioned, the format of the bytecode is the same on all implementations of

the “Java Virtual Machine” (VM). This format, as well as the command set of the



4.4 Java 85

virtual machine, is specified in [24]. The VM interprets the byte code and executes

it. In the future, Sun is planning to provide a special hardware chip that can directly

execute the Java bytecode, but today even the special “Java Stations” Sun is vending

are still based on bytecode interpreters.

Figure 4.5 shows the Execution Environment. The Java VM has already been ported

to a large number of platforms. It is nowadays included in the Netscape web browser

as well as the Microsoft Internet Explorer and therefore available on almost every

desktop PC. Ports exist as well for all major UNIX platforms.

in HTML
Documentation

Sourcecode
Java

javac

javap
Byte Code

Disassembled

java

Bytecode
Java VM

javadoc

javah
C Header

Files

Interpretation
of Bytecode

Figure 4.6: The Java Development Environment

The Java language itself is very compact and can therefore be learned easily. The

important part of the JDK however is the included set of class libraries. Those

libraries provide a common subset of methods and objects that can be used to write

portable programs in Java. In particular, they include the “Abstract Windowing

Toolkit” (AWT) that provides a common set of objects and methods for writing



86 Writing Web–based Management Programs

user interfaces. Those methods use the window manager / graphical frontend of the

platform the code is running on.

Also included in the JDK are some additional tools like thejdb Java debugger, a

bytecode disassembler and the “appletviewer”. Sun also provides the “HotJava”

web browser, which is completely written in Java. This browser can be used to

display Java–enhanced web pages.

To summarize, the important elements of the Java environment are:

� The language specification.

� The bytecode compiler.

� The virtual machine that interprets the bytecode at runtime.

� A set of class library APIs.

� Implementations of the class libraries specific to the target machine.

� A runtime environment in which the interpreter, bytecode verifier, class loader,

etc. run, also specific to the target machine.

� Other development tools such as a debugger, a disassembler and an appletviewer

for testing applets outside of a web browser.

� Finally, there is also a web browser written in Java called HotJava.

Java Applets vs. Java Applications

From the users point of view, Java applications can be compared to compiled C

programs since they are started from a command line just like any compiled pro-

gram would be started. However, there is a major difference: Java applications, as

well as applets, are interpreted. Applications are started on the command–line by

calling the Java Interpreter with the name of the application as an argument. Ap-

plets, in contrary to applications, are small programs which can be included in web



4.4 Java 87

pages and run inside the user’s browser. Alternatively, applets can be run in the

appletviewer that comes with the JDK, which has advantages for debugging.

4.4.2 The Java Security Concept

Since a Java–enabled Web browser allows to embed executable Java code in a Web

page, which can be downloaded across the net and run on any client machine, secu-

rity is a critical concern. Users can download Java applets with exceptional ease —

sometimes without even knowing it. This exposes Java users to a significant amount

of risk.

For our planned SNMP applet, we will have to use the networking functions from

the Java class libraries. In order to use them, it is important to understand the

security concept Java uses, since networking functions are extremely dependent on

the security model.

The Java security management distinguishes three different classes of Java applets.

This is necessary because there is a clear difference between programs that are

installed on a local machine — and therefore will always be given a certain trust

that they are not “evil” — and programs that the user gets over the network. When

things downloaded over the network are just text and data there is no security issue.

However, downloading a Java program and executing it on the local machine is

of course very much a security issue. Unless measures are taken to prevent it, a

malicious (or buggy) applet could delete files, post confidential data it reads from

the hard disk over the network or do other nasty stuff.

The measures that have been taken to prevent those things mostly consist of pro-

viding applets loaded over the network with a restrictive “sandbox” environment

in which they run. Since not all applets are loaded over the network, and locally

stored programs may be trusted more, the Java security management distinguishes

between the following security classes which are given different permissions to use

the resources of the machine:



88 Writing Web–based Management Programs

Applications can connect anywhere they like, unless a new security manager which

limits connections is installed. However, applications cannot run in a web

browser and are therefore not interesting for us, except for the reason that

they can connect any other system on the network.

Untrusted Applets are all applets that are loaded over the network. Since code

that has been loaded via the network is potentially dangerous, this code is

executed in a “sandbox” environment where it has only limited access to the

machine the web browser is running. Especially networking capabilities are

being restricted to avoid the applet communicating sensitive information to

the outside.

Trusted Applets are loaded from the local machine. For trusted applets, some of

the restrictions may be relaxed by the browser. They are nevertheless not

granted all the privileges that applications get.

Intermediate applet security policies are also possible. An applet viewer could be

implemented that would place fewer restrictions on applets loaded from an internal

network (a so called “intranet”) than on those loaded from the Internet.

The restrictions the “sandbox” environment is putting on an untrusted applet include

the following:

� It can’t load libraries or define native methods.

� It can’t ordinarily read or write files on the host that’s executing it.

� It can’t make network connections except to the host that it came from.

� It can’t start any program on the host that’s executing it.

� It can’t read every system property.

� Windows that an applet opens up look different than windows that an aplica-

tion opens up.



4.4 Java 89

Since we want to write an applet that will run inside a web browser anywhere on

our network, we have to live with those restrictions for untrusted applets. This

imposes some problems, especially with SNMP, since here we forceably will need

to establish network connections to SNMP agents. Since those agents are (usually)

not running on the host we loaded the applet from, this imposes a major design

problem here. Fortunately, AdventNet provides a solution for this problem, which

we will see later.

The networking restrictions do not only depend on the source the applet is loaded

from. There are also differences depending on the type of proxy server that might

be located between the client browser and the web server as well as the actual im-

plementation of the environment the applets are loaded into. Additionally, the re-

strictions do also depend on the kind of networking operation that is attempted.

Connections to arbitrary network sockets are not routed through HTML proxies,

therefore they are to be treated differently than so called “URL connections”, which

are used to fetch information from web or ftp servers and may transparently access

HTTP proxies.

Table 4.1 summarizes where untrusted applets are allowed to connect using

java.net.Socket and table 4.2 summarizes where they are allowed to connect to

when usingjava.net.URLConnection (to communicate with WWW/ftp servers

etc.).

For SNMP applications, URL connections cannot be used. We need direct access to

the SNMP port of the agent that is to be queried. As it can be seen from Table 4.1,

this connectivity can only be achieved to the web server itself, and currentlyonly if

no HTTP proxy is used.

The solution that Advent proposes as a workaround for this problem is called “SNMP

Applet Server (SAS)”. This server allows the applet to send and receive SNMP

packets to and from any managed devices accessible from the web server host. The

SAS program is a Java application and has to be run on the web server. The applet

using the Advent library will then automatically communicate with the SAS appli-

cation on the web server, which relays all communication to the agent that the applet



90 Writing Web–based Management Programs

Appletviewer Netscape

No Proxy Depending on the setting of the

appletviewer.security.mode

property, you can connect nowhere,

only to the originating host, or

anywhere.

Can only connect to the originating

host.

SOCKS Proxy Same as no proxy, assuming you set

thesocksProxyHost property.

No connections allowed (except un-

der OS/2, where it’s the same as

with no proxy).

HTTP Proxy In case the

appletviewer.security.mode

property is set to “none” then all

connections are allowed; else no

connections are allowed.

No connections allowed.

Table 4.1: Where Applets are allowed to connect to when using Sockets

Appletviewer Netscape

No Proxy Depending on the setting of the ap-

pletviewer.security.mode property,

you can connect nowhere, only to

the originating host, or anywhere.

Can only connect to the originating

host (= the web server).

SOCKS Proxy Same as no proxy, assuming you set

thesocksProxyHost property.

Same as no proxy, assuming

Netscape has been properly config-

ured to use the proxy.

HTTP Proxy Same as no proxy, assuming you

set the appropriate properties (see

Proxies).

Same as SOCKS Proxy.

Table 4.2: Where Applets are allowed to connect to when using URL connections



4.4 Java 91

wants to communicate with. This is possible, since Java applications don’t have to

deal with security problems. The whole use of the SAS is completely transparent

to the programmer and the user. It suffices to start the server application on the web

server once, the applet can then automatically detect the TCP port that is used on

the web server and all further communication will be relayed by it.

Server
WWW

Web
Browser

Server Machine Client Machine

Internet

SAS

Java

Applet

JavaVM
JavaVM

Program

SNMP

SNMP Agent
Program

Figure 4.7: Relaying SNMP communication via the SNMP applet server (SAS)

The SNMP applet server can be used for arbitrary TCP ports, not only the SNMP

port. Since this would be a potential security hole, the function of the Applet server

can be limited to the forwarding of messages for the SNMP port with the command–

line switch. In addition to its networking capabilities, the server also provides func-

tionality that gives the applets limited access to files stored in a user directory on

the web server.

It should be mentioned that with the recent new version of the Java JDK an addi-

tional new security mechansim is introduced: So called “signed applets”. In the

future, those applets will allow the user to trust certain applets that are loaded over

the network as well. For this purpose, applets can be signed using a public key

mechanism. Currently, this is still under development and has no significance for

us.



92 Writing Web–based Management Programs

4.5 Technical Overview over the AdventNet SNMPv2

Java class libraries

This section briefly presents the Architecture of the AdventNet SNMPv2 Java class

libraries. The package is designed to enable writing object–oriented Java applets

and Java applications that use SNMP to communicate with the managed nodes.

Readers who do not want to write Java based SNMP applications or who do not

know the principles of object–oriented programming may skip this section.

The package is divided into four categories. These are

1. SNMP Variable classes

2. SNMP Communicationclasses

3. SNMP MIB related classes

4. Miscellaneousclasses, i.e. the client interface class, and the Exception sub–

classes.

4.5.1 SNMP Variable Classes

The ancestor of all SNMP variable classes is an abstract class calledSnmpVar. This

class contains abstract methods for printing, ASN encoding, ASN decoding, etc.

TheSnmpVar class has five direct sub–classes. They are:

SnmpInt This class is used to represent SNMP Integer syntax variables.

SnmpNull This class is used to represent SNMP Null variables.

SnmpOID The SNMP Object Identifier variable class. In addition to the usual SNMP

variable class methods, this class has special constructors and methods to help

interface to the MIB related classes described below.



4.5 Technical Overview over the AdventNet SNMPv2 Java class libraries 93

SnmpString Used for SNMP Octet Strings.

The following two classes are subclasses of SnmpString:

SnmpOpaque Used for SNMP Opaque variable types.

SnmpIpAddress Used for SNMP IpAddress variable types.

SnmpUnsignedInt This class is not used directly but is a super–class of some of

the SNMP application variable types.SnmpUnsignedInt has the following

sub-classes.

SnmpCounter For SNMP Counter variable types.

SnmpGauge For SNMP Gauge variable types.

SnmpTimeticks For SNMP Timeticks variable types.

A variable bindingis a combination of an object identifier and an SNMP variable

that’s commonly used in SNMP manager – agent interactions. TheSnmpVarBind

class is used for variables and methods needed for variable bindings.ASNTypes

contains some utility functions and constants, needed in encoding and decoding

SNMP variables. It is not needed for developers of applications.

4.5.2 SNMP Communication Classes

The Advent SNMP package uses theSnmpAPI class to manage sessions created by

the user application, manage the MIB modules that have been loaded, and store

some key parameters for SNMP communication, e.g. SNMP ports to be used. An

SNMP application (manager or agent) often needs to manage multiple sessions on

account of interacting with multiple SNMP peers. TheSnmpAPI class has a list of

sessions attached to it and monitors each of the sessions for timeouts and retransmits

via a separate thread. It enables a few methods across all sessions, e.g. checking if

responses have come in on any of the sessions, etc. Multiple threads can work with

a singleSnmpAPI instance. TheSnmpAPI class must be instantiated and started to

use it.



94 Writing Web–based Management Programs

TheSnmpSession class is used to manage a session with an SNMP peer. More than

one host can be accessed via a single session, but Advent recommends to use sep-

arate sessions for hosts that are often accessed inside an application.Each session

runs as a separate thread(primarily to do receive tasks) and provides functions to:

� Open sessions (on a particular local port if needed)

� Synchronously or asynchronously send and receive SNMP requests

� Check for responses and timeouts

� Close sessions.

An SnmpSession needs to be instantiated and opened before it can be used to com-

municate with an SNMP peer.

Interaction between the SNMP manager and the agent is done via SNMP protocol

data units (PDUs). TheSnmpPDU class will be used to provide the variables and

methods to create and use the SNMP PDU.

The SASClient class for access to the SNMP Applet Server (SAS)

Part of the SNMP communication classes is theSASClient class for enabling com-

munication through the SAS server introduced in section 4.4.2. It is not necessary

to use this class directly since its use is completely transparent. It suffices to decide

whether the SAS should be used when using theopen method in theSnmpSession

class.

In order to save applet data to a file for use later (for example to save user configu-

ration for the next time the applet is started), thesaveFile method inSASClient

can be used. It saves the specified data to the specified file in the “SASusers” sub–

directory on the applet host.



4.5 Technical Overview over the AdventNet SNMPv2 Java class libraries 95

4.5.3 SNMP MIB Related Classes

MIB modules allow an SNMP managed agent to let users know about the structure

and format of data available on the agent. The MIB modules are usually specified in

a MIB module file, which needs to be parsed to understand the syntax and structure

of the data available on the agent.

TheMibModule class provides a means to parse and use the data available in a MIB

module file. EachMibModule instance is created from a MIB module file, and you

can load and unload MIB modules by creating and deleting these instances. The

instance contains all the nodes of the MIB tree as well as defined traps and textual

conventions. A few utility methods and variables are provided, e.g.getNode() to

search the module for a node matching a specified OID.

TheMibModule class makes use of a number of other classes, some of which are

useful for getting additional information on the MIB module, or specific nodes in

the MIB:

� The MibMacro class is used to parse MIB macros, and onlyOBJECT-TYPE

andTRAP-TYPE macros are supported. Any parsing of MIB modules would

instantiate the macros for the module being parsed. TheMibTrap class is

used to keep data on trap types defined in a module.

� The MibNode class represents a node in the parsed MIB tree. A list of in-

stances of this class is contained in aMibModule and represents the MIB

tree. This class may also be contained in anSnmpOID instance. A number of

attributes and methods in theMibNode class are provided to simplify devel-

opment of applications using the MIB definitions.

� TheLeafSyntax class is used to represent any unique syntax, including tex-

tual conventions, that is defined in a MIB module. For example,INTEGER

(SIZE(1..5)), would have it’s ownLeafSyntax class instance that repre-

sents this syntax. For leaf nodes in the MIB tree, theMibNode instance con-



96 Writing Web–based Management Programs

tains aLeafSyntax reference. Thus for a MIB leaf node,LeafSyntax can

be used to determine if a value is within the allowed range, for example.

4.5.4 Miscellaneous Classes

The following classes do not fall into the above categories, or apply across all cate-

gories.

SnmpClient This is an interface (Java terminology) that can be used to change

default behaviour on callbacks, authentication, and where to print debugging

output. To use it, the user would implement this class and set theclient

variable in theSnmpAPI instance.

MibException This is an exception class that is used to throw MIB parsing excep-

tions.

SnmpException This is an exception class to throw SNMP exceptions, e.g. decode

errors.



Chapter 5

A Java Applet that works with

NeTraMet Meters

The idea why we initially looked at Java was that we wanted to write a real time

network analysis applet which allows to get immediate insights into the traffic on

the network being monitored. In the last chapters, we introduced

a) Theflow methodology, which allows us to reduce the amount of data col-

lected to the minimum we really need.

b) TheNeTraMet architectureand theOC3MON hardware, providing us with a

platform and a standardized interface for flow measurement and analysis at

high data rates.

c) The “fluid” application, which serves as a good example of how the collected

flow information can be presented within a graphical interface

d) The AdventNetJava SNMP class library, which provides us with a means

to write an applet that can communicate with existing network management

agents.



98 A Java Applet that works with NeTraMet Meters

In this chapter, we will describe how we integrate all those points into one single

Java applet we called “fluid”. This applet displays flows measured with aNe-

TraMetmeter in a way likenifty does it. The difference is that our applet is running

inside a web browser and therefore is easily usable from anywhere on the network.

Currently it does not offer as many features to change the display mode, axis scaling

etc. asnifty, but since the code is written in modular object–oriented way, it should

not be too difficult to extend it.

The main goal when implementing the applet was not to write a sophisticated prod-

uct but we wanted to examine whether it was possible to do this in Java.



5.1 Design of the Applet 99

5.1 Design of the Applet

5.1.1 The Environment

Figure 5.1 depicts the complete environment the applet will run in. First, its code

is loaded from the web server into the web browser (as the green line in the figure

shows). It then can communicate with theNeTraMetmeter (which is an SNMP

agent) via the SNMP applet server application. The applet server is running on

the web server machine and relays all SNMP messages between the applet and the

agent. TheNeTraMetmeter is configured using the standard tools (NeMac, nifty)

and can be used to meter any of the network segments that the host it is running on

has access to.

Internet /
Intranet

Server
WWW

Server Machine Client Machine

Agent Machine

Web
BrowserSAS Java

Applet

JavaVM
JavaVM

Program

NeTraMet
Meter

Monitored
Segment

SNMP

Figure 5.1: Environment in which the Applet is running



100 A Java Applet that works with NeTraMet Meters

5.1.2 The Architecture of the Applet

Within the IETF architecture described in section 3.2.1, the applet implements the

functionality of the meter reader as well as the analysis application. It doesnot

implement the meter managers functionality, asnifty for example does. This could

be added in later versions, but for our study we treated it with lower priority. The

manager functionality can completely be taken over byNeMaC.

Analysis
ApplicationMeter Reader

Manager

Meter

NeTraMet

"fluid" Applet

NeMaC

Figure 5.2: How the “fluid” Applet fits in the IETF RTFM Architecture

Figure 5.2 illustrates which parts of the RTFM architecture are implemented within

the “fluid” applet. Since the “Manager” functionality is not implemented in Java,

the NeMacprogram is used for uploading of the ruleset file to the meter. This is

an advantage of the RTFM architecture: One can implement one application after

another, independently from each other. A Java implementation of the manager

functionality could for example be done as a next development step.

5.1.3 Organization of the Java Code

The Java code for the Applet is split into multiple parts. The main program is con-

tained in the file “fluid.java”. This file includes thefluid class, which extends



5.1 Design of the Applet 101

theapplet class and is run in the first place after the bytecode has been loaded into

the browser.

The applet makes use of so called “threads”. This is very advantageous when pro-

gramming SNMP communications. Using threads, one can send SNMP requests

asynchronously at any time without having to wait for a reply. The response is

received within the “callback” method, which is running inside a separate thread.

Alternatively, one can still use synchronous communication. When programming

the main SNMP communications with theNeTraMetmeter we found this technique

very convenient.

Besides the code in “fluid.java”, there are some other files that contain mainly

the code for the user interface. Those are:

netramet/FlowDataEntry.java describes the data structure that is stored for

each flow inside the applet.

netramet/Ruleset.java describes the data structure of rulesets. It is currently

only used for the search of the ruleset in the meters table. Later it could

be expanded to hold the whole Ruleset information in order to allow ruleset

upload as well.

StatusPanel.java Contains the code for the display of general status informa-

tion, like connection state with the meter, SNMP community name etc.

FlowPanel.java which represents the canvas in which the actual flow data is dis-

played.

FlowFrame.java which contains the code for the Pop–Up windows that appear

when data for a particular flow is to be displayed.

Figure 5.3 gives an overview of the applets structure. As it can be seen from the

figure, more than oneFlowFrame object can be child of theFlowPanel. These

frames contain the information about particular flows and are opened whenever the

user selects one of the points inside the flow panel representing a flow.



102 A Java Applet that works with NeTraMet Meters

- Main Program

fluid

- SNMP Queries
Meter Name

- Fields for Community and
- Meter/Connection Status

- Display of XY-Chart with
Points for all Flows

- Pop-Up Window

FlowFrame

StatusPanel

FlowPanel

Information on Flow

netramet/
Ruleset
- Data Structure

for Rulesets

- Data Structure

netramet/
FlowDataEntry

for Flowtable Entries

Figure 5.3: Structure of the Java Sourcecode



5.2 Installation and Usage 103

5.2 Installation and Usage

5.2.1 Preparation of the Web Server

To install the program on a web server, it suffices to put the compiled Java files

(which have the extension.class) into the directory structure of the web server.

An HTML file with an APPLET tag must then be created in the same directory.

Figure 5.4 shows an example for the syntax of this tag.

<APPLET CODE="fluid.class"

WIDTH=500 HEIGHT=650

NAME="by Frieder Loeffler" CODEBASE=".">

<PARAM NAME=port VALUE="161">

<PARAM NAME=hostname VALUE="ksoc3mon2.rus.uni-stuttgart.de">

<PARAM NAME=community VALUE="frieder">

<PARAM NAME=MIBFILE1 VALUE="rfc1213-MIB">

<PARAM NAME=MIBFILE2 VALUE="newflowmib">

</APPLET>

Figure 5.4: Example of how the Applet is included into a Web Page

5.2.2 Starting the NeTraMet meter

Before the applet can be used, aNeTraMetmeter that is to be queried must be

installed at the measurement point. If the OC3MON NeTraMet is to be used, this

must be started from the DOS command line as follows, where “frieder” in this

example is the SNMP write community name for write–access to the meter.

set DPMIMEM=MAXMEM 8192

set HOST_CLOCK_RATE=166e6

mode co80,50

ntmoc3 -5 -wfrieder



104 A Java Applet that works with NeTraMet Meters

The environment variables that have to be set are used by the OC3MON code and

are not relevant for operation ofNeTraMet.

In case of the UNIX version ofNeTraMetbeing used, the meter would have to be

started as user “root” with the following command:

NeTraMet -wfrieder

Once the meter is started, it will analyze all packets that it sees and will try to

aggregate them to flows as defined by the rulesets that are uploaded to it.

5.2.3 Uploading Rulesets with a manager application

Before the applet can be used, the meter must be programmed with the flow speci-

fication it should use. For this purpose, the manager functionality of the programs

that come withNeTraMetcan be used. Supposed that the meter is running on host

ksoc3mon, the SNMP write community name isfrieder and the rulesets to use

would be specified in a file calledmyxrules, the rulesets could be uploaded to the

meter either by callingnifty as

nifty -c 120 -r myxrules ksoc3mon frieder

or by callingNeMaCas:

NeMaC -c 120 -r myxrules ksoc3mon frieder

An example for a ruleset file can be found in Appendix A. Within the ruleset file

it is possible to change the letters or symbols that are used to depict the flows of

different kinds. Please consult thenifty manual1 for details.

1The manual is part of theNeTraMetdistribution



5.2 Installation and Usage 105

5.2.4 Using the Applet

Once the web page is loaded, the applet will be started automatically. To use it, the

user first has to enter thehostnameof the machine the NeTraMet meter is running

on. (A default for the hostname can be set by specifying the “hostname” parameter

in the tag, as in the example). Additionally, the SNMPcommunity namemust be

specified in the corresponding field.

Once those two parameters are entered, the applet will connect to the remoteNe-

TraMet meter. If it succeeds, it will display theNeTraMetVersion number and

maximum number of flows in the “Meter Version” and “Status” fields. If it does

not succeed, the message “No Meter” will be displayed in the status field. Fig-

ure 5.5 shows what the status fields in the applet should look like after succesfully

connecting to the meter.

Figure 5.5: Status frame of the “fluid” applet after succesfully connecting to the

meter

After the connection has been successfully established, the user has to enter the

name of the ruleset that was uploaded withNeMaCor nifty. In case of the ruleset

shown in Appendix A, the name would be “2” (the name appears after theSET

keyword in the ruleset file).

Once the name of the ruleset has been typed into the “ruleset name” field of the



106 A Java Applet that works with NeTraMet Meters

applet and the return key is pressed, the applet tries to find that ruleset in the meters

flowRuleSetInfoTable. If it suceeds, it registers itself in theflowReaderInfoTable

of the meter as a meter reader that uses this set. The name of the Ruleset owner will

then be shown in the “Ruleset Owner” field of the status frame.

Thereafter, no more user intervention is necessary. The applet will now try to query

the meter in regular intervals to read theflowDataTable. During the queries, the

flow identifier of the flow that is currently beeing analysed will be shown in the

“Status” field. On heavily loaded networks, this process can take a while.

Running the applet in the JDK 1.0.2 appletviewer on a Pentium–166 with the Linux–

2.0 operating system, it took about 10 seconds to transfer the data records for

300 flow records from the meter to the applet. The implementation already uses

“GETBULK” requests on theflowDataPackageTable to transfer the packaged record

data. Further improvements in speed can therefore only be achieved by using a

faster Java environment (for example a just–in–time compiler might help). This

shows that the transfer time for the flow table is a critical factor when implementing

RTFM applications in Java.

After the whole flow table has been transferred, the applet will display all flows in

its table inside the XY–graph. Each flow is represented with either one character

or a symbol, depending on the definitions used in the ruleset file. The same syntax

as innifty is used here, so that ruleset files developed for use withnifty can be

used without modification. It is even possible to upload a ruleset file only once and

display the information withfluid andnifty at the same time.

After some minutes, the applets display area looks like depicted in Figure 5.6. The

Y axis depicts the “active time”, i.e. how long the period was in that packets have

been detected for that flow by the meter. On the Y axis, the applet displays the num-

ber of PDUs that have been received by the meter for that particular flow. Currently,

the number of received and sent PDUs is added before the flow is displayed.

Once no more data for a flow is being received, i.e. the flow is no longer “current”,

the color in which its letter or symbol is being displayed will slowly fade to white.



5.2 Installation and Usage 107

Figure 5.6: The “fluid” applet displaying information about flows



108 A Java Applet that works with NeTraMet Meters

In the current implementation, a flow will be deleted from the display once it has

been inactive for more than 1000 seconds.

5.2.5 Getting more detailed Information

In order to get additional information about a particular flow (for example to find

out which machines are generating excess traffic on the network), the user can select

each of the characters or symbols by clicking with the mouse on it. A window as

depicted in figure 5.7 will then open up.

Figure 5.7: A “fluid” window containing information about a particular flow

The title line of this window is used to display the flow number, which together with

the time when the flow was first seen can be used as a unique flow identifier. Below,

the flow kind, as specified in the ruleset file, can be determined. In our example, the



5.2 Installation and Usage 109

letter “S” is used for all “ssh” (secure shell) flows, i.e. flows that use the TCP port

number 22.

The “From PDUs” and “To PDUs” lines are self–explaining. They give information

about the number of PDUs transferred in each direction. In the same way the two

following lines inform about the number of octets that were transferred. By dividing

the number of octets by the number of PDUs one can easily see the average size of

a PDU in each direction of the flow.

The two following lines show the source and destination IP2 address. From the des-

tination address field in the example one can indeed see that the flow depicted here

was a secure shell (ssh) flow, since the port number used on the destination machine

was the secure shell port (22). Only the source address is displayed in non–numeric

form because of a bug in the current Java environment. This bug restricts the access

to the name server – the socket connection that would be needed in order to look up

the host name of the destination machine is refused by the security manager.

The “Flow Status” field is also self–explaining. It can either contain the value “cur-

rent” for flows for which data has been seen during the last measurement inteveral

of the meter, or “inactive” when no data has been seen.

The last two lines are used to display exact time information for the flow. By calcu-

lating the difference between the two time values, one can determine the time when

the flow was first seen.

Whenever the meter is queried and new information for a flow for which an infor-

mation window is still open is received, this window is updated. This allows the

user to permanently monitor the counts for one particular flow. As an example, the

network manager could use this feature to select the traffic flow for a given appli-

cation he suspects to misbehave. He would then just leave the flow information

window open and could verify how much data this application is generating in both

directions.

2Note that currently the applet does not support any other network protocols than TCP/IP



110 A Java Applet that works with NeTraMet Meters



Chapter 6

Further Work

6.1 The Fluid Applet and the RTFM Working Group

6.1.1 The Fluid Applet

The most important features that are still missing from the applet are certainly the

ones already implemented innifty:

� Possibilities to choose different criteria for the Y–axis, for example number

of octets transferred, byte rate, packet rate etc.

� Possibitities to change the scaling of both axes. Currently an automatic algo-

rithm is used for scaling. This algorithm always scales the axis in a way so

that the maximum value can still be displayed.

Besides those rather cosmetical additions, an interesting possibility for further work

would be to integrate the whole applet into an object oriented environment like the

AdventNet product line of Network Management products. The applet code could

then be used as one module for building complex network monitoring applications.

At the same time, the existing user interface components could easily be used for



112 Further Work

displaying graphs over all kinds of counters. One could for example imagine that

the user picks one particular flow out of the XY–graph that is displayed and then

decides to make a graph over the number of bytes or packets transferred for this

flow. This could be used to monitor just a particular pair of hosts activity over

longer periods of time. Currently such fine granularity is not available with the

standard network monitoring and management software.

Other things to add or improve might be to allow graphing for bidirectional traffic

criteria, i.e. two points in the charts or 3–D charts displaying the sent and received

PDUs or number of octets and not only the total, as it is currently done.

6.1.2 Ongoing Developments within the RTFM Working Group

On the 39th IETF meeting (Munich, August 1997), Nevil Brownlee presented some

interesting new methodologies for usingNeTraMet to measure not only volume

(using counters) but other parameters withdistributions. In the recent beta versions,

he added features that allow the measurement of per flow packet interarrival times

and turnaround times.

Measurement methodologies that were previously applied to the whole network

traffic will become applicable to selected flows. Those flows can be specified by

using ruleset files as it is done within NeTraMet right now since distributions will

seamlessly be added to the current implementation. Currently, the RTFM working

group is trying to find “interesting” new attributes like the ones mentioned above to

be added to the MIB.

6.2 Open Questions

There are many questions still open and to study — both formally and with respect

to the application field.



6.2 Open Questions 113

So far, with flows declaration preceeded their application, i.e. we were using flows

statically.

It is an interesting question whether there are situations where it could be of interest

to change the flow specification — e.g. aggregation level, time out parameter etc.

— dynamicallyin response to changing network situations.

Typical questions with respect to theapplication fieldwould be:

� Can we use a flow–based instant characterization of the network as a param-

eter in a RSVP–policy function?

� How would we relate a static or dynamic flow picture of an IP 0ver ATM

network to determine e.g. the holding times for ATM SVCs?

The flow methodology and the applications presented in this thesis could be used in

further studies on such questions.



Chapter 7

Conclusions

This thesis focused on the third of the three “flow” contexts “Resource Reserva-

tion”, “Switching” and “Measurement and Analysis”. From the comparison of dif-

ferent tools and strategies for network monitoring, the IETF Realtime Traffic Flow

Measurement model with its prototype applications (NeTraMet, NeMaCandnifty)

showed to be the most advanced one. It can already be used on many kind of net-

work technologies, most interesting certainly the version for the OC3MON. This

is insofar an important contribution as it allows to use the OC3MON hardware to

build low–cost customized network measurement environments for monitoring on

ATM OC3 links using a standardized interface. It can only be hoped that manu-

facturers of networking equipment will soon begin to implement the RTFM meter

functionality into their equipment. The standardization process within the IETF has

reached a state where this would be the next logical step.

The work on the Java based traffic flow analyser is not yet finished by far. The con-

tribution has reached a state in which it can be used to show that Java is useful for

this kind of application. The language has shown to be suitable for the development

of such network management applications, not only because the object–oriented

development is helpful when adapting the program to local requirements. The con-

tribution has also shown that the speed of the Java Virtual Machine on standard

desktop PCs is high enough for such flow–based analysis applications. For the



115

RTFM working group, the Java applet is important, since — according to the IETF

rules — the architecture needs to be implemented in two genetically independent

forms before it can become a standard. Our Java–based implementation contributes

to the standardization process by providing a genetically independent meter reader.

Having the thesis focused on Measurement and Analysis aspects of flows, we feel

this to be necessary in order to make the flow paradigm eventually applicable to

Reservation and Switching.



116 Conclusions



Appendix A

Ruleset file for “fluid”

# Rulesetfile for the "fluid" applet and the "nifty" flow analyzer.

# Derived from Nevil Brownlee's "nifty" ruleset file.

#

# If your meter hostname was "ksoc3mon" and your SNMP community name

# was ``frieder'', you would upload this file using either

# "nifty" or "NeMaC" to a NeTraMet meter with one of the following commands:

#

# nifty -c 120 -r myxrules ksoc3mon frieder

# NeMaC -c 120 -r myxrules ksoc3mon frieder

#

# (c) Siegfried Loeffler 07/97

#

SET 2

#

RULES

SourcePeerType & 255 = dummy: Ignore, 0;

SourcePeerType & 255 = IP: Pushto, IP_pkt;

SourcePeerType & 255 = 4: Pushto, IP_pkt;

SourcePeerType & 255 = Other: PushToAct, other_pkt;

#

Null & 0 = 0: GotoAct, Next; # Not IP or Other

FlowKind & 255 = 3: PushtoAct, Next; # Plot as SQUARE

SourceInterface & 255 = 0: PushPkttoAct, Next;

SourcePeerType & 255 = 0: CountPkt, 0;

#

other_pkt: # We want to know ethertype/LSAP (in source/dest Peer)

FlowKind & 255 = 3: PushtoAct, Next; # Plot as SQUARE

SourceInterface & 255 = 0: PushPkttoAct, Next;

SourcePeerAddress & 255.255 = 0: PushPktToAct, Next;

DestPeerAddress & 255.255 = 0: CountPkt, 0;



118 Ruleset file for “fluid”

#

IP_pkt:

SourceTransType & 255 = tcp: Pushto, tcp_udp;

SourceTransType & 255 = udp: Pushto, tcp_udp;

SourceTransType & 255 = icmp: GotoAct, c_icmp;

Null & 0 = 0: GotoAct, Next; # Not TCP or UDP

SourceTransType & 255 = 0: PushPkttoAct, Next;

FlowKind & 255 = 3: PushtoAct, count_IP; # Plot as SQUARE

#

tcp_udp:

SourceTransAddress & 255.255 = domain: Retry, 0; # Want WKP as dest

SourceTransAddress & 255.255 = 22: Retry, 0;

SourceTransAddress & 255.255 = 79: Retry, 0;

SourceTransAddress & 255.255 = ftp: Retry, 0;

SourceTransAddress & 255.255 = ftpdata: Retry, 0;

SourceTransAddress & 255.255 = gopher: Retry, 0;

SourceTransAddress & 255.255 = 143: Retry, 0;

SourceTransAddress & 255.255 = 513: Retry, 0;

SourceTransAddress & 255.255 = 137: Retry, 0; # NETBIOS Name Service

SourceTransAddress & 255.255 = 138: Retry, 0; # NETBIOS Datagram

SourceTransAddress & 255.255 = 139: Retry, 0; # NETBIOS Session

SourceTransAddress & 255.255 = nntp: Retry, 0;

SourceTransAddress & 255.255 = 2049: Retry, 0;

SourceTransAddress & 255.255 = ntp: Retry, 0;

SourceTransAddress & 255.255 = 110: Retry, 0;

SourceTransAddress & 255.255 = 515: Retry, 0;

SourceTransAddress & 255.255 = smtp: Retry, 0;

SourceTransAddress & 255.255 = snmp: Retry, 0;

SourceTransAddress & 255.255 = 1080: Retry, 0; # UA socks gateway

SourceTransAddress & 255.255 = telnet: Retry, 0;

SourceTransAddress & 255.255 = www: Retry, 0;

SourceTransAddress & 255.255 = 3128: Retry, 0; # Squid cache

SourceTransAddress & 255.255 = 3130: Retry, 0; # Squid cache control

SourceTransAddress & 255.255 = 8080: Retry, 0; # UA WWW proxy

SourceTransAddress & 255.255 = 6000: Retry, 0;

#

DestTransAddress & 255.255 = domain: GotoAct, c_domain;

DestTransAddress & 255.255 = 22: GotoAct, c_ssh;

DestTransAddress & 255.255 = 79: GotoAct, c_finger;

DestTransAddress & 255.255 = ftp: GotoAct, c_ftp;

DestTransAddress & 255.255 = ftpdata: GotoAct, c_ftpdata;

DestTransAddress & 255.255 = gopher: GotoAct, c_gopher;

DestTransAddress & 255.255 = 143: GotoAct, c_imap;

DestTransAddress & 255.255 = 513: GotoAct, c_login;

DestTransAddress & 255.255 = 137: GotoAct, c_netbios; # Name

DestTransAddress & 255.255 = 138: GotoAct, c_netbios; # Datagram

DestTransAddress & 255.255 = 139: GotoAct, c_netbios; # Session

DestTransAddress & 255.255 = nntp: GotoAct, c_news;

DestTransAddress & 255.255 = 2049: GotoAct, c_nfs;



119

DestTransAddress & 255.255 = ntp: GotoAct, c_ntp;

DestTransAddress & 255.255 = 110: GotoAct, c_pop;

DestTransAddress & 255.255 = 515: GotoAct, c_printer;

DestTransAddress & 255.255 = smtp: GotoAct, c_smtp;

DestTransAddress & 255.255 = snmp: GotoAct, c_snmp;

DestTransAddress & 255.255 = 1080: GotoAct, c_socks; # UA socks

DestTransAddress & 255.255 = 3130: GotoAct, c_squid_control;

DestTransAddress & 255.255 = 3128: GotoAct, c_squid_data;

DestTransAddress & 255.255 = telnet: GotoAct, c_telnet;

DestTransAddress & 255.255 = www: GotoAct, c_www;

DestTransAddress & 255.255 = 8080: GotoAct, c_www; # UA WWW proxy

DestTransAddress & 255.255 = 6000: GotoAct, c_xwin;

#

Null & 0 = 0: GotoAct, c_tcp_udp; # 'Unusual' port

#

c_domain:

FlowKind & 255 = 'D': PushtoAct, count_IP;

c_ftp:

c_ftpdata:

FlowKind & 255 = 'F': PushtoAct, count_IP;

c_imap:

FlowKind & 255 = 'I': PushtoAct, count_IP;

c_netbios:

FlowKind & 255 = 'B': PushtoAct, count_IP;

c_news:

FlowKind & 255 = 'N': PushtoAct, count_IP;

c_pop:

FlowKind & 255 = 'P': PushtoAct, count_IP;

c_smtp:

FlowKind & 255 = 'M': PushtoAct, count_IP;

#c_socks:

# FlowKind & 255 = 'S': PushtoAct, count_IP;

c_ssh:

FlowKind & 255 = 'S': PushtoAct, count_IP;

c_squid_data:

FlowKind & 255 = 'C': PushtoAct, count_IP;

c_squid_control:

FlowKind & 255 = 'c': PushtoAct, count_IP;

c_telnet:

FlowKind & 255 = 'T': PushtoAct, count_IP;

c_www:

FlowKind & 255 = 'W': PushtoAct, count_IP;

c_xwin

FlowKind & 255 = 'X': PushtoAct, count_IP;

#

c_finger:

FlowKind & 255 = 'f': PushtoAct, count_IP;

c_gopher:

c_login:



120 Ruleset file for “fluid”

c_nfs

c_ntp:

c_printer:

c_snmp:

c_socks:

#

c_tcp_udp:

Null & 0 = 0: Goto, Next; # Not a well-known TCP or UDP port

SourceTransType & 255 = tcp: GotoAct, c_tcp;

Null & 0 = 0: GotoAct, c_udp;

c_udp:

FlowKind & 255 = 2: PushtoAct, count_IP; # Plot as PLUS

c_tcp:

FlowKind & 255 = 1: PushtoAct, count_IP; # Plot as DIAMOND

c_icmp:

FlowKind & 255 = '*': PushtoAct, count_IP;

#

count_IP:

SourceInterface & 255 = 0: PushPkttoAct, Next;

SourcePeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;

DestPeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;

SourceTransAddress & 255.255 = 0: PushPkttoAct, Next;

DestTransAddress & 255.255 = 0: CountPkt, 0;

#

#

#FORMAT

# FlowRuleSet FlowIndex FirstTime " "

# SourcePeerType " "

# SourcePeerAddress DestPeerAddress " "

# SourceTransAddress DestTransAddress " "

# ToPDUs ToOctets " " FromPDUs FromOctets " "

# FirstTime LastTime

#

# end of file



Appendix B

Overview over the Flow MIB

flowMIB
(40)

flowControl
(1)

flowRuleSetInfoTable
(1)

flowInterfaceTable
(2)

flowReaderInfoTable
(3)

(4)
flowManagerInfoTable

flowData
(2)

(1)
flowDataTable

(2)
flowColumnActivityTable

flowDataPackageTable
(3)

FlowDataEntry
(See Chapter 3.1)

Entry={Activita Attr., ActivityTime,
ActivityIndex, ActivityData}

Entry={PackageSelector, RuleSet,
Time, Index, Data}

flowRuleTable
(1)

flowRules
(3)

flowMIBConformance
(4)

flowControlGroups
(1)

flowDataTableGroups
(2)

flowDataScaleGroup
(3)

flowDataSubscribeGroup
(4)

flowDataColumnTableGroup
(5)

flowDataPackageGroup
(6)

flowRuleTableGroup
(7)

(1)
flowMIBGroups

(1)
flowMIBCompliances

(2)
flowMIBComplianceFlowRuleSetInfoEntry=

{Index, Size, Owner, Timestamp
RowStatus, InfoName,
RulesReady, FlowRecords}

FlowInterfaceEntry=
{Sample Rate, Lost Pkts}

Entry={Index, Timeout, Owner, 
LastTime, PrevTime, Status,
RuleSet}

Entry={Index, CurrentRuleSet,

CounterWrap, Owner, TimeStatus,
StandbyRuleSet, HighWaterMark,

RunningStandby}

(6)
flowInactivityTimeout

(7)
flowActiveFlows

(8)
flowMaxFlows

(9)
flowFloodMode

(5)
flowFloodMark

FlowRuleEntry
(cf. MIB for
details)

Figure B.1: Overview over the RTFM Flow MIB



Bibliography

[1] M. Acharya and B. Bhalla. A flow model for computer network traffic using
real–time measurements. InSecond International Conference on Telecommu-
nications Systems, Modeling and Analysis, March 1994.

[2] S. Bostock. SNMP over IPX. Request for Comments (Experimental) RFC
1420, Internet Engineering Task Force, March 1993.

[3] Daniel Freedman, Chris Metz, Jaap Burger (IBM) Brian Dorling.Internet-
working over ATM. Prentice–Hall, 1996.

[4] Nevil Brownlee. Traffic flow measurement: Meter MIB. Request for Com-
ments (Experimental) RFC 2064, Internet Engineering Task Force, January
1997.

[5] Nevil Brownlee. Traffic flow measurements: Experiences with netramet. Re-
quest for Comments (Informational) RFC 2123, Internet Engineering Task
Force, March 1997.

[6] Kimberly C. Claffy. Internet traffic chararcterization. PhD thesis, University
of California, San Diego, 1994.

[7] D. Hirsh, C. Mills, G. Ruth. Internet accounting: Background. Request
for Comments (Informational) RFC 1272, Internet Engineering Task Force,
November 1991.

[8] Martin de Prycker.Asynchronous Transfer Mode – Solution For Broadband
ISDN. Ellis Horwood, UK, second edition, 1993.

[9] D. Estrin and D. Mitzel. An assessement of state and lookup overhead in
routers. InProceedings of IEEE Infocom 92, May 1992. pp. 2332-42.

[10] Juha Heinanen. Multiprotocol encapsulation over ATM adaptation layer 5.
Request for Comments (Experimental) RFC 1483, Internet Engineering Task
Force, July 1993.



BIBLIOGRAPHY 123

[11] R. Jain and S. A. Routhier. Packet trains — measurement and a new model
for computer network traffic.IEEE Journal on Selected Areas in Communica-
tions, 4(6), September 1986.

[12] James Gosling, Bill Joy, Guy Steele. The Java Language Specification (Ver-
sion 1.0). Technical report, Sun Microsystems, 1996.

[13] Joel Apisdorf, K. C. Claffy, Kevin Thompson, Rick Wilder. OC3MON –
flexible, affordable, high performance statistics collection. Technical report,
National Laboratory for Applied Networks Research (NLANR), 1996.

[14] K. C. Claffy, H.-W. Braun, G. C. Polyzos. A parametrizable methodology for
internet traffic flow profiling.IEEE JSAC Special Issue on the Global Internet,
1995.

[15] K. McCloghrie, M. Rose. Structure and identification of management infor-
mation for TCP/IP-based internets. Request for Comments (Standard) RFC
1155 (STD16), Internet Engineering Task Force, May 1990.

[16] K. McCloghrie, M. Rose. Management information base for network manage-
ment of TCP/IP-based internets: MIB-II. Request for Comments (Standard)
RFC 1213 (STD 17), Internet Engineering Task Force, March 1991.

[17] F. Kastenholz. Definitions of managed objects for the ethernet-like interface
types. Request for Comments (Standard) RFC 1623 (STD 50), Internet Engi-
neering Task Force, May 1994.

[18] Ken Arnold, James Gosling.The Java Programming Language. Addison
Wesely Longman, 1996.

[19] W. Kernighan and D. M. Ritchie.The C programming Language (2nd ed).
Prentice–Hall Inc., Englewood Cliffs, N. J. 07632, 1988.

[20] Larry L. Peterson, Bruce S. Davie.Computer Networks – A Systems Approach.
Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[21] Larry Wall, Tom Christiansen, Randal L. Schwartz.Programming Perl — 2nd
Edition. O’Reilly & Associates, Inc., September 1996.

[22] M. Acharya, R. Newman-Wolfe, H. Latchman, R. Chow and B. Bhalla. Real–
time hierarchical traffic characterization of a campus area network. InPro-
ceedings of the Sixth International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation. University of Florida, 1992.



124 BIBLIOGRAPHY

[23] M. Schoffstall, M. Fedor, J. Davin, J. Case. A simple network management
protocol (SNMP). Request for Comments (Standard) RFC1157 (STD15), In-
ternet Engineering Task Force, May 1990.

[24] Martin Lindholm, Frank Yellin.Java Virtual Machine Specification. Addison
Wesley Longman, 1996.

[25] J. Mogul. Observing TCP dynamics in real networks. InProceedings of ACM
SIGCOMM ’91, 9 1991.

[26] N. Brownlee, C. Mills, G. Ruth. Traffic flow measurement: Architecture.
Request for Comments (Experimental) RFC 2063, Internet Engineering Task
Force, January 1997.

[27] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. Liaw, T. G. Minshall.
Transmission of flow labelled IPv4 on ATM data links. Request for Comments
(Informational) RFC 1954, Internet Engineering Task Force, May 1996.

[28] P. W. Edwards, R. E. Hoffman, F. Liaw, T. Lyon, G. Minshall. Ipsilon flow
management protocol specification for IPv4 version 1.0. Request for Com-
ments (Informational) RFC 1953, Internet Engineering Task Force, May 1996.

[29] C. Partridge. A proposed flow specification. Request for Comments (Proposed
Standard) RFC 1363, Internet Engineering Task Force, September 1992.

[30] Peter Newman, Tom Lyon, Greg Minshall. Flow labelled IP: A connectionless
approach to ATM.IEEE Infocom, March 1996.

[31] R. Caceres, P. Danzig, S. Jamin and D. Mitzel. Characteristics of wide–area
TCP/IP conversations. InProceedings of ACM SIGCOMM ’91, 9 1991. pp.
101-112.

[32] R. Enger, J. Reynolds. FYI on a network management tool catalog: Tools for
monitoring and debugging TCP/IP internets and interconnected devices. Re-
quest for Comments (FYI) RFC1420 (FYI2), Internet Engineering Task Force,
June 1993. (Obsoletes RFC1298).

[33] Rolf M. Schmid, Reto Beeler, Silvia Giordano, Hannu Flinck. IP and ATM.
Position paper, ACTS AC094: EXPERT, 1996.

[34] M. Rose. A convention for defining traps for use with the SNMP. Request
for Comments (Informational) RFC 1215, Internet Engineering Task Force,
March 1991.

[35] M. Rose. SNMP over OSI. Request for Comments (Experimental) RFC 1418,
Internet Engineering Task Force, March 1993.



BIBLIOGRAPHY 125

[36] Marshall T. Rose. The Simple Book – An Introduction to Management of
TCP/IP Based Internets. Prentice Hall, 1991.

[37] S. W. Handelmann, N. Brownlee, Greg Ruth. Real time flow measurement
working group — new attributes for traffic flow measurement. Technical re-
port, Internet Engineering Task Force, March 1997.

[38] William Stallings. SNMP, SNMPv2, and CMIP – The Pratical Guide to
Network–Management Standards. Addison–Wesley, 1993.

[39] S. Waldbusser. Remote network monitoring management information base.
Request for Comments (Experimental) RFC 1757, Internet Engineering Task
Force, February 1995.



ACKNOWLEDGEMENTS

Acknowledgements

First of all I would like to thank Paul Christ1, Director of the Department for BelWue

Development and Communication Systems at the Computer Center of the Univer-

sity of Stuttgart, for supervising me during my work on this project. Without his

support and guidance, the realisation would not have been possible.

Thanks go also to Wilfried Milow2, who organized and installed the OC3MON–

hardware I used for my experiments, as well as to Robert Stoy3, who was always

able to answer my questions related to ATM and who installed the optical splitters

of OC3MON in the departments ATM network.

Dr. Nevil Brownlee4, Director for Technology Development in the University of

Aucklands (New Zealand) Information Technology Systems and Services Depart-

ment, helped me a lot with the numerous questions I had when implementing the

Java applet. I’d also like to thank Nevil for allowing me to present this work at the

39th IETF conference in Munich.

Henry Pijffers5 helped me by providing a Java algorithm to decode BER encoded

SNMP sequences.

1paul.christ@rus.uni-stuttgart.de
2wmilow@str.daimler-benz.com
3robert.stoy@rus.uni-stuttgart.de
4n.brownlee@auckland.ac.nz
5pijffers@cs.utwente.nl


	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	Table of Abbreviations
	1 - Introduction
	2 - Flows
	3 - Existing Flow-based Measurement and Analysis Applications
	4 - Writing Web-based Management Programs
	5 - FLuid - A Java Applet that works with NeTraMet Meters
	A - Ruleset File for FLuid
	B - Overview over the Flow MIB
	Bibliography

